

MONITOREO AMBIENTAL BLOQUE 31

IDENTIFICACIÓN

Proyecto:	INFORME TRIMESTRAL DE MONITOREO DESCARGAS DOMÉSTICAS, DESFOGUES DE AGUAS LLUVIA Y DE ESCORRENTÍA Y CUERPOS HÍDRICOS DE INMISIÓN					
Periodo	ABRIL – JUNIO 2018					
Entidad:	Centro de Servicios Técnicos y Transferencia					
Elitidad.	Tecnológica Ambiental CESTTA					
Acreditación OAE	Nº OAE LE 2C 06-008					

CONTENIDO

ACTA [DE RESPONSABILIDAD	3
	A TÉCNICA	
	ODUCCIÓN	
2.1	ANTECEDENTES	
2.2	OBJETIVOS	
2.3	MARCO LEGAL	
3.ALCA	NCE DEL MONITOREO	6
	CEDIMIENTOS Y METODOS	
4.1	PROTOCOLO DE MUESTREO DE AGUAS	
4.2	PROCEDIMIENTO	8
4.3	MÉTODOS DE ANALISIS	. 11
1.1.	AGUA DE DESCARGA	. 11
	AGUA DE INMISION	
1.3.	AGUAS DE DESCARGAS NEGRAS Y GRISES	. 14
5.RESU	JLTADOS	
5.1	DESFOGUE DE AGUAS DE ESCORRENTÍA Y AGUAS LLUVIA Y CUERPOS HÍDRICOS DE INMISIÓN	. 17
5.2	AGUAS NEGRAS Y GRISES	. 19
	ISIS Y DISCUSIÓN DE RESULTADOS	
	CLUSIONES Y RECOMENDACIONES	
	1. INFORMES DE RESULTADOS	
	TADOS AGUAS LLUVIA Y ESCORRENTÍA	
	TADOS CONTROL INTERNO CUERPO HIDRICOS	
	ROL INTERNO DEL ACCESO ECOLÓGICO	
	OREO SUBTERRÁNEO ZECH	
	TADOS AGUAS NEGRAS Y GRISES	
	2. CERTIFICADOS DE CALIBRACIÓN	
	3. CADENAS DE CUSTODIA	
	4. ALCANCE DE ACREDITACIÓN	
) 5. ACTAS DE INYEÇCIÓN / REPORTE	
ACUMU	JLADO DE INYECCIÓN	. 30

ACTA DE RESPONSABILIDAD

El CESTTA se responsabiliza de la veracidad de la información consignada en este informe técnico como resultado del análisis de las descargas hídricas. Además el Centro de Servicios Técnicos y Transferencia Tecnológica Ambiental mantiene la confidencialidad de los resultados derivados del Monitoreo Ambiental realizado.

Dr. Luis Roberto Erazo A.
DIRECTOR EJECUTIVO
CESTTA

1. FICHA TÉCNICA

OPERADORA	EP Petroamazonas	Petroamazonas BLOQUE	
ÁREA	Apaika Nenke	FASE DE OPERACIÓN	Desarrollo y producción
REPORTE DE MONITOREO	Descargas domésticas, desfogue de aguas lluvias y de escorrentía, y cuerpos hídricos de inmisión	PERÍODO DE MONITOREO	Abril – Junio 2018

2. INTRODUCCIÓN

2.1 ANTECEDENTES

Petroamazonas EP, en cumplimiento del Decreto Ejecutivo (DE) No. 1215 publicado en el Registro Oficial No. 265 del 13 de febrero de 2001, "Reglamento Sustitutivo del Reglamento Ambiental para las Operaciones Hidrocarburíferas en el Ecuador" (RAOHE), en especial lo establecido en el artículo 12 y lo especificado en las tablas 4 y 5 del Anexo 2 de dicho Reglamento, efectúa el muestreo de descargas domésticas y desfogues de aguas lluvias y cuerpos hídricos de inmisión, fase de desarrollo y producción.

Dado que la normativa no establece el requerimiento de muestreos de desfogue de aguas lluvia como tampoco específica límites permisibles, por lo cual y a efectos de contar con una base estadística se efectúa el muestreo y análisis correspondientes, cuya sistematización y análisis, incluyendo los resultados de muestreos de aguas negras y grises del período abril - junio 2018, se registran en el presente documento.

En el Bloque 31 no se generan descargas industriales que sean vertidas al ambiente, pues el procesamiento de crudo se efectúa en el EPF del bloque 12. Los ensayos analíticos se efectúan a través del Centro de Servicios Técnicos y Transferencia Ambiental CESTTA, en su laboratorio acreditado (Anexo 1) por el Servicio de Acreditación Ecuatoriano (SAE).

2.2 OBJETIVOS

2.2.1. GENERAL

Cumplir con el monitoreo ambiental de descargas de aguas negras y grises; desfogue de aguas lluvias y
escorrentía, cuerpos hídricos de inmisión y reporte de resultados, requerido por la normativa ambiental vigente
aplicable a las actividades hidrocarburíferas – fase de desarrollo y producción

2.2.2. ESPECÍFICOS

- Determinar el cumplimiento con los límites permisibles establecidos en la tabla 5, 4A, y 4B del RAOHE, Decreto N°1215, para descargas de aguas grises y negras, desfogues de aguas lluvias y escorrentía y cuerpos hídricos de inmisión respectivamente.
- Establecer acciones correctivas en caso de determinarse desviaciones a los límites permisibles.

2.3 MARCO LEGAL

REGLAMENTO SUSTITUTIVO DEL REGLAMENTO AMBIENTAL PARA LAS OPERACIONES HIDROCARBURÍFERAS EN EL ECUADOR, DECRETO EJECUTIVO 1215

El artículo 12 de este cuerpo legal establece que "los sujetos de control deberán realizar el monitoreo ambiental interno de sus emisiones a la atmosfera, descargas líquidas y sólidas [..]" y los análisis del monitoreo interno reportarse a la entidad de control de acuerdo a los formatos establecidos en la normativa y con una periodicidad trimestral.

En el artículo 86 se determina que los regulados deberán cumplir con máximos permisibles establecidos para descargas líquidas y cuerpos de inmisión establecidos en las tablas 4a, 4b y 5 del Anexo 2.

En esta normativa se determina que el monitoreo ambiental de aguas y descargas líquidas será mensual. En el caso de descargas de aguas negras y grises el muestreo tendrá como mínimo una periodicidad semanal.

ACUERDO MINISTERIAL NO. 061. REFORMA DEL LIBRO VI DEL TEXTO UNIFICADO DE LEGISLACIÓN SECUNDARIA.

El artículo 257 de este Texto Legislativo establece que los análisis deberán ser efectuados a través de laboratorios calificados; y, el artículo 255, establece la obligatoriedad del regulado, reportar los resultados de los monitoreos correspondientes a sus descargas.

3. ALCANCE DEL MONITOREO

En sujeción al marco legal anteriormente descrito, se efectuó los muestreos semanales de las descargas de aguas negras y grises. Adicionalmente con frecuencia mensual se efectuó el monitoreo de desfogues de aguas lluvias y escorrentía provenientes de facilidades y cuerpos hídricos receptores del Bloque 31. El presente informe consolida los resultados obtenidos durante el primer trimestre (abril - junio) del 2018

De igual manera, para fines de control interno Petroamazonas EP, realiza trimestralmente monitoreos en los cuerpos hídricos ubicados a lo largo del acceso ecológico desde el campamento permanente hacia la plataforma Apaika Producción.

A continuación se presenta el inventario de puntos de monitoreo de descargas de aguas grises y negras, puntos de desfogue de aguas lluvias y de escorrentía (Trampas API), cuerpos hídricos de inmisión y puntos de control interno en cuerpos receptores del área de Bloque 31

TABLA 1. Puntos de Monitoreo del Área Bloque 31

INSTALACIÓN	CÓDIGO	IDENTIFICACIÓN DE PUNTOS DE MONITOREO	FRECUENCIA
	TRAMPA API 1	Agua de Escorrentía	Mensual
	TRAMPA API 2	Agua de Escorrentía	Mensual
APAIKA	TRAMPA API 3	Agua de Escorrentía	Mensual
AI AIIVA	TRAMPA API 4	Agua de Escorrentía	Mensual
	PUNTO INMISIÓN APAIKA	Punto de Control Interno Plataforma	Mensual
FOR	TRAMPA API ECB	Agua de Escorrentía	Mensual
ECB	PUNTO INMISIÓN ECB	Punto de Control Interno Plataforma	Mensual
	TRAMPA API ZECH	Agua de Escorrentía	Mensual
ZECH	PUNTO INMISIÓN ZECH	Punto de Control Interno Plataforma	Mensual
	POZO DE MONITOREO	Punto de Control Interno Plataforma	Mensual
NENIZE	TRAMPA API NENKE	Agua de Escorrentía	Mensual
NENKE	PUNTO INMISIÓN NENKE	Punto de Control Interno Plataforma	Mensual

INSTALACIÓN	CÓDIGO	IDENTIFICACIÓN DE PUNTOS DE MONITOREO	FRECUENCIA
	PUENTE RÍO TIPUTINI	Punto de Control Interno Acceso Ecológico	Trimestral
	PUENTE RÍO S/N NENKE	Punto de Control Interno Acceso Ecológico	Trimestral
ACCESO (ZECH-APAIKA)	PUENTE RÍO PINDUYACU	Punto de Control Interno Acceso Ecológico	Trimestral
	RÍO BEJUCO	Punto de Control Interno Acceso ZECH - TPTN	Trimestral
	RÍO HUIRIRIMA	Punto de Control Interno Acceso ZECH - TPTN	Trimestral
APAIKA PRODUCCIÓN			N/A
ZECH	PLANTA DE TRATAMIENTO DE AGUA NEGRAS Y GRISES DE CAMPAMENTO PERMANENTE	Descarga Doméstica	Semanal

La determinación de cumplimiento se realiza en base a análisis comparativos entre los valores de concentración obtenidos en los parámetros analizados y los máximos permisibles establecidos en la tabla 5 para descargas domésticas. Para el caso de desfogues de aguas lluvia y escorrentía, dado que no tiene valores límites permisibles en la normativa nacional vigente, se consideran los valores de la tabla 4a y 4b, como referencia para análisis comparativo, sin que potenciales desvíos puedan ser determinados como incumplimientos.

4. PROCEDIMIENTOS Y METODOS

4.1 Protocolo de muestreo de aguas

- Ubicar el punto de muestreo
- Identificar el punto de muestreo (fecha, hora, coordenadas UTM)
- Preparar el material y equipo (verificación de equipos y etiquetado de envases)
- Enjuagar 2 a 3 veces con la fuente de agua que se va a muestrear, desechando el agua de enjuague.

- Recoger la muestra sin dejar cámara de aire. Se puede dejar un mínimo sin llenar que permita la variación de volumen debida a potenciales diferencias térmicas. Si se le va a agregar algún conservante contemplar el volumen necesario para el mismo.
- Llenar los recipiente con la muestra ubicando el envase semi sumergido en el agua.
- Añadir los conservantes de acuerdo a cada parámetro o conjunto de parámetros.
- Cerrar el envase asegurando su cierre hermético.
- Si no estaba rotulada la botella roturarla con tinta indeleble. Siempre tener papel y cinta adhesiva para emergencias o muestras no planificadas. En cada botella se debe especificar el tipo de consérvate si lo tiene y parámetros a ser analizados.
- Colocar blue ice en el cooler
- Ubicar los envases con las muestras en el interior del cooler.
- Llenar los datos en la cadena de custodia (parámetros a analizar, fecha y hora de muestreo, número de muestras, persona que toma la muestra, persona de contacto).
- Aprobar la cadena de custodia con la persona que solicita el análisis.
- Enviar el cooler más la cadena de custodia en transporte terrestre al laboratorio.
- Ingresar al laboratorio la muestra utilizando los datos de la cadena de custodia.
- Asignar un código interno de laboratorio a la muestra ingresada.
- Designar la muestra al responsable técnico del área para su distribución y análisis.
- Emitir los resultados al área de gestión para la elaboración del informe de resultados.
- Entregar al departamento de proyectos para la interpretación y elaboración del informe final.
- Entrega de informe al cliente.

4.2 Procedimiento

- a) Etiquetado: Para las muestras tomadas se utilizan etiquetas adhesivas. En donde consta la siguiente información:
 - Número de la muestra
 - Nombre de la persona que toma la muestra.
 - Fecha y hora de muestreo.
 - Lugar de muestreo.
 - Coordenadas UTM (WGS 84)

Se adhiere las etiquetas a los envases, la etiqueta se rellena con tinta indeleble en el momento de la toma.

b) Cadena de Custodia:

Toda la información pertinente a la toma de muestra se registra en la cadena de custodia, en la cual consta lo siguiente:

- Fecha; es el día en el cual se ha tomado la muestra.
- Matriz; elegir la matriz en la cual ingresa según el tipo de muestra.
- Proyecto; se identifica el proyecto o contrato mediante el cual se realiza el muestreo.
- Empresa; se identifica la empresa en la cual se realiza el muestreo.
- Dirección: ubicación de la Empresa en la cual se muestrea.
- Persona de contacto; persona que solicita el muestreo y a nombre de la cual se emite el informe.
- N°; número de muestra o muestras que se tomaron.
- Punto de muestreo / Descripción; identificación del punto y característica particular del mismo.
- Coordenadas; coordenada en formato UTM y en sistema WGS 84.
- Hora; la hora de muestreo.
- Muestreado por; nombre del técnico asignado para el muestreo in situ.
- Transportado por; personal CESTTA ya que puede ser transportado por personal particular el mismo que ingresa al laboratorio las muestras.
- Tipo de muestra; clasificación de la muestra dentro de una matriz (Matriz aguas, tipo de muestra descarga o inmisión)
- Parámetros a ser analizados; parámetro individual o tabla
- Observaciones; se escribe los valores y parámetros in situ, además de algunas observaciones durante el muestreo.
- Datos Adicionales; en donde se escribe la firma del cliente que solicita además de su número de cedula.
- Entrega/Envía/Fecha; nombre y firma del técnico que realiza el muestreo y la fecha en que es aprobado dicho documento.
- Recibe/Fecha; nombre y firma del técnico que recibe y realiza el ingreso en el laboratorio.

c) Envío de la muestra al laboratorio:

La muestra es enviada al laboratorio lo antes posible bajo las condiciones de preservación necesarias, e irá acompañada del registro de la cadena de custodia.

d) Recepción de la muestra:

 En el laboratorio, la persona encargada recibe la muestra e inspecciona su estado y la vialidad o no vialidad de la realización del ensayo según el procedimiento específico de ensayo respectivo.

- Se verifica la información de la etiqueta de la botella con la del registro de la cadena de custodia y la oferta de trabajo.
- Se asigna un código de laboratorio a cada muestra y se genera la distribución de trabajo respectiva.
- La muestra y distribución de trabajo es entregada al responsable del área.

e) Asignación de la muestra para ser analizada:

- El responsable técnico de cada área asigna las muestras y parámetros a ser realizados por cada analista de acuerdo a su cualificación y autorización.
- El analista procederá a realizar los análisis de acuerdo a lo establecido en cada procedimiento especifico de ensayo de acuerdo al parámetro

f) Envases de la muestra

Los envases que se utilizan para el muestreo son:

TABLA 2: Características para Conservación y Transporte de Muestras

PARÁMETRO	VOLUMEN	TIPO DE ENVASE	PRESERVANTE	TIEMPO MÁXIMO PARA ANÁLISIS	TEMPERATURA PARA TRANSPORTE / ALMACENAMIENTO
Potencial Hidrógeno	100 ml	Frasco de plástico	No aplica	24 horas	4 °C
Conductividad	100 ml	Frasco de plástico	No aplica	24 horas	4 °C
Cloro Libre Residual	100 ml	Frasco de plástico	No aplica	24 horas	4 °C
Coliformes Fecales	150 ml	Frasco de plástico estéril	No aplica	24 horas	4 °C
Hidrocarburos Aromáticos Policíclicos	1000 ml	Frasco de vidrio ámbar	Ácido Sulfúrico pH <2	28 días	4 °C
Hidrocarburos Totales	1000 ml	Frasco de vidrio ámbar	Ácido Sulfúrico pH <2	28 días	4 °C
Demanda Química de Oxígeno	50 ml	Frasco de vidrio ámbar	Ácido Sulfúrico pH <2	28 días	4 °C
Sólidos Totales	100 ml	Frasco de plástico	No aplica	28 días	4 °C

PARÁMETRO	VOLUMEN	TIPO DE ENVASE	PRESERVANTE	TIEMPO MÁXIMO PARA ANÁLISIS	TEMPERATURA PARA TRANSPORTE / ALMACENAMIENTO
Bario Cromo Plomo Vanadio	300 ml	Frasco de plástico	Ácido Nítrico pH <2	28 días	4 °C

g) Material y Equipo de campo utilizado

Para el muestreo se utilizó los siguientes materiales y equipos:

- Coolers
- Guantes de látex
- Cadenas de custodia
- Etiquetas
- Cinta de embalaje
- Envases de vidrio y plástico

4.3 MÉTODOS DE ANALISIS

1.1. AGUA DE DESCARGA

Potencial de Hidrógeno

PEE/CESTTA/05

APHA 4500- H+

La determinación del potencial hidrogeno se lo realiza por electrometría con un electrodo de vidrio y compensación de temperatura previa calibración con buffer de pH 4, 7 y 10. Para realizar la medición es necesario establecer un adecuado equilibrio entre electrodo y muestra. La lectura se la realiza introduciendo el electrodo en la muestra hasta una profundidad en la cual quede totalmente cubierto el diafragma del electrodo en la muestra (2 cm aproximadamente).

Conductividad Eléctrica

PEE/CESTTA/06

APHA 2510 B

La determinación de la conductividad se lo realiza por electrometría mediante un electrodo con compensación de temperatura previa calibración con estándares de conductividad eléctrica. Para realizar la medición es necesario establecer un adecuado equilibrio entre electrodo y muestra. La lectura se la realiza introduciendo el electrodo en la muestra hasta una profundidad en la cual quede totalmente cubierto el diafragma del electrodo en la muestra (3 cm aproximadamente).

Hidrocarburos totales

PEE/CESTTA/07

TNRCC 1005

Este método se basa en una extracción líquido-líquido de la muestra con una mezcla de n-hexano y diclorometano en una proporción de 4:1, seguido del análisis del extracto por cromatografía de gases y detección por ionización de flama (GC/FID).

La concentración de TPH es reportada como la sumatoria de todo el rango de carbono analizado.

Demanda Química de Oxígeno

PEE/CESTTA/09

APHA 5220 D

Se lo realiza mediante el método de reflujo cerrado. Los resultados en mg/L de DQO se definen como los miligramos de O2 consumido por litro de muestra bajo las condiciones de este procedimiento. La muestra se digesta durante 2 horas a 150°C con ácido sulfúrico y un agente oxidante fuerte, dicromato de potasio. Los compuestos orgánicos oxidables reaccionan, lo que reduce el ion dicromato (Cr2O72-) a verde ión crómico(Cr + 3).

Se mide la cantidad de Cr3 + que se produce mediante espectrofotometría VIS a una longitud de onda de 620 nm. El reactivo de DQO también contiene iones de plata y mercurio. La plata es un catalizador, y el mercurio se utiliza para eliminar las interferencias producidas por la presencia de cloruros en la muestra.

Para muestras que contienen una concentración de cloruros superior a 2000 mg/L se adiciona a cada tubo de digestión de DQO aproximadamente 1 gramo de sulfato de mercurio por cada 1000 mg/L de cloruros por arriba de los 2000 mg/L, y se procede como lo indicado en los párrafos anteriores.

Sólidos Totales

PEE/CESTTA/10

APHA 2540 B

De la muestra de agua de la descarga o inmisión se toman 25 ml en una capsula de porcelana la misma se la lleva a sequedad y posteriormente a una estufa durante 3 horas a 105°C hasta peso constante y luego se determina gravimétricamente su peso.

Bario, Cromo Total, Plomo, Vanadio

PEE/CESTTA/174.

EPA 200.7

En 100 ml de muestra se añade HNO3 concentrado se digesta la muestra por 7 horas, terminado esta fase se afora la solución a 100 ml se filtra con filtro de celulosa el filtrado se lleva a un vial y se realiza las lecturas en el Equipo de ICP el cual posee curvas de calibración para los distintos metales.

1.2. AGUA DE INMISION

Potencial de Hidrógeno

PEE/CESTTA/05

APHA 4500- H+

La determinación del potencial hidrogeno se lo realiza por electrometría con un electrodo de vidrio y compensación de temperatura previa calibración con buffer de pH 4, 7 y 10. Para realizar la medición es necesario establecer un adecuado equilibrio entre electrodo y muestra. La lectura se la realiza introduciendo el electrodo en la muestra hasta una profundidad en la cual quede totalmente cubierto el diafragma del electrodo en la muestra (2 cm aproximadamente).

Conductividad Eléctrica

PEE/CESTTA/06

APHA 2510 B

La determinación de la conductividad se lo realiza por electrometría mediante un electrodo con compensación de temperatura previa calibración con estándares de conductividad eléctrica. Para realizar la medición es necesario establecer un adecuado equilibrio entre electrodo y muestra. La lectura se la realiza introduciendo el electrodo en la muestra hasta una profundidad en la cual quede totalmente cubierto el diafragma del electrodo en la muestra (3 cm aproximadamente).

Hidrocarburos totales

PEE/CESTTA/07

TNRCC 1005

Este método se basa en una extracción líquido-líquido de la muestra con una mezcla de n-hexano y diclorometano en una proporción de 4:1, seguido del análisis del extracto por cromatografía de gases y detección por ionización de flama (GC/FID).

La concentración de TPH es reportada como la sumatoria de todo el rango de carbono analizado.

Demanda Química de Oxígeno

PEE/CESTTA/09

APHA 5220 D

Se lo realiza mediante el método de reflujo cerrado. Los resultados en mg/L de DQO se definen como los miligramos de O2 consumido por litro de muestra bajo las condiciones de este procedimiento. La muestra se digesta durante 2 horas a 150°C con ácido sulfúrico y un agente oxidante fuerte, dicromato de potasio. Los compuestos orgánicos oxidables reaccionan, lo que reduce el ion dicromato (Cr2O72-) a verde ión crómico (Cr + 3).

Se mide la cantidad de Cr3 + que se produce mediante espectrofotometría VIS a una longitud de onda de 620 nm. El reactivo de DQO también contiene iones de plata y mercurio. La plata es un catalizador, y el mercurio se utiliza para eliminar las interferencias producidas por la presencia de cloruros en la muestra.

Para muestras que contienen una concentración de cloruros superior a 2000 mg/L se adiciona a cada tubo de digestión de DQO aproximadamente 1 gramo de sulfato de mercurio por cada 1000 mg/L de cloruros por arriba de los 2000 mg/L, y se procede como lo indicado en los párrafos anteriores.

Hidrocarburos Aromáticos Policíclicos(HAPs)

PEE/CESTTA/08

APHA 6440-B

Este método se basa en la extracción líquido-líquido de la muestra mediante diclorometano, y el extracto después de un proceso de concentración y purificación es analizado mediante HPLC. El detector de fluorescencia se utilizará complementariamente al HPLC para efectuar la detección e identificación de los HAPs seleccionados.

El proceso de purificación (limpieza o clean-up) es llevado a cabo en columna de gel de sílice para favorecer la eliminación de interferencias. Esta purificación del extracto de muestra es considerada para los casos que lo ameriten, es decir siempre y cuando la muestra presente coloración o se evidencie como un extracto sucio.

El análisis conlleva la determinación de la suma de seis HAPs: fluoroanteno, benzo(b)fluoroanteno, benzo(k)fluoroanteno, benzo(a)pireno,benzo(ghi)perileno, indeno(1,2,3-cd)pireno y Expresados en base de carbono (C) – factor convencional de conversión: 0.95).

1.3. AGUAS DE DESCARGAS NEGRAS Y GRISES

Potencial de Hidrógeno

PEE/CESTTA/05

APHA 4500- H+

La determinación del potencial hidrogeno se lo realiza por electrometría con un electrodo de vidrio y compensación de temperatura previa calibración con buffer de pH 4, 7 y 10. Para realizar la medición es necesario establecer un adecuado equilibrio entre electrodo y muestra. La lectura se la realiza introduciendo el electrodo en la muestra hasta una profundidad en la cual quede totalmente cubierto el diafragma del electrodo en la muestra (2 cm aproximadamente).

Demanda Química de Oxígeno

PEE/CESTTA/09

APHA 5220 D

Se lo realiza mediante el método de reflujo cerrado. Los resultados en mg/L de DQO se definen como los miligramos de O2 consumido por litro de muestra bajo las condiciones de este procedimiento. La muestra se digesta durante 2 horas a 150°C con ácido sulfúrico y un agente oxidante fuerte, dicromato de potasio. Los compuestos orgánicos oxidables reaccionan, lo que reduce el ion dicromato (Cr2O72-) a verde ión crómico (Cr + 3).

Se mide la cantidad de Cr3 + que se produce mediante espectrofotometría VIS a una longitud de onda de 620 nm. El reactivo de DQO también contiene iones de plata y mercurio. La plata es un catalizador, y el mercurio se utiliza para eliminar las interferencias producidas por la presencia de cloruros en la muestra.

Para muestras que contienen una concentración de cloruros superior a 2000 mg/L se adiciona a cada tubo de digestión de DQO aproximadamente 1 gramo de sulfato de mercurio por cada 1000 mg/L de cloruros por arriba de los 2000 mg/L, y se procede como lo indicado en los párrafos anteriores.

Cloro residual

PEE/CESTTA/12

STANDARD METHODS No. 4500-CI G

Se determinan mediante la técnica de espectrofotometría UV-Vis. En ausencia de ion yoduro, el cloro libre reacciona instantáneamente con indicador DPD para producir un color rojo. La adición posterior de una pequeña cantidad de ion yoduro actúa catalíticamente provocando la aparición del color debido a la monocloramina. La adición del ion yoduro en exceso induce una respuesta rápida de la dicloramina. La intensidad del color es directamente proporcional a la concentración de cloro presente en la muestra. La lectura se la realiza en un espectrofotómetro. Determinándose la concentración de Cloro mediante una curva de calibración.

Coliformes Fecales

PEE/CESTTA/48

STANDARD METHODS NO. 9222 D Y 92221

El método de filtrado de membrana es una manera rápida y simple de estimar las poblaciones bacterianas en el agua. El método es especialmente útil al evaluar grandes volúmenes de muestras o al realizar diariamente muchas pruebas de coliformes.

En el primer paso, se filtra un volumen de muestra apropiado dependiendo del tipo de agua siguiendo las directrices del método de referencia, a través de un filtro de membrana estéril, con poros lo suficientemente pequeños (0,45 micrones) como para retener las bacterias. El filtro se coloca en una almohadilla absorbente en una caja Petri estéril con dos mililitros del medio de cultivo selectivo mFc con ácido rosólico para el crecimiento de coliformes fecales. La caja petri que contiene el filtro y la almohadilla se incuba en posición invertida durante 24 horas a una temperatura de 44,5°C. Después de la incubación, las colonias que se han formado de color azul se identifican y enumeran.

TABLA 3: Métodos de Ensayo de Parámetros Monitoreados en Descargas Líquidas y Cuerpos Hídricos de Inmisión

PARÁMETRO	UNIDADES	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
			PEE/CESTTA/05
Potencial de Hidrógeno	Unidades de pH	pH, Electrometría, (4,0 a 12,45) unidades de pH	Método de referencia: Standard Methods Ed22,2012 4500-H+B
Conductividad Eléctrica	uS/cm	Conductividad eléctrica, Electrometría, (10 a 10000) uS/cm	PEE/CESTTA/06 Método de referencia: Standard Methods Ed21,2005 2510B
		Cloro libre y Cloro residual,	PEE/CESTTA/12
Cloro Libre Residual	mg/l	Espectrofotometría UV-VIS, (0,10 a 4,00) mg/l	Método de referencia Standard Methods Ed.21,2005 4500Cl-G
Coliformes Fecales	UFC/100	Coliformes fecales, Filtración por	PEE/CESTTA/48
Comornes i écales	ml	membrana, >1ufc/100 ml	Método de referencia: Standard Methods

PARÁMETRO	UNIDADES	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
			Ed.22,201220059222Dy92221 Coliformes fecales
Hidrocarburos Aromáticos Policíclicos	mg/l	Hidrocarburos aromáticos policíclicos (HAPs),Cromatografía líquida de alta eficiencia HPLC	PEE/CESTTA/08 Método de referencia: Standard Methods Ed21,2005 6440B
Hidrocarburos Totales	mg/l	Hidrocarburos totales de petróleo (TPH),Cromatografía de gases, (0,2 a 500) mg/L	PEE/CESTTA/07 Método de referencia TNRCC -1005,Revisión 03, 2001
Demanda Química de Oxígeno	mg/l	Demanda Química de Oxigeno(DQO),reflujo cerrado, Espectrofotometría UV-Vis, (30 a 10300) mg/l	PEE/CESTTA/09 Método de referencia: Standard Methods Ed. 22,2012 5220D
Sólidos Totales	mg/l	Sólidos Totales, Gravimetría, (100 a 20000) mg/l	PEE/CESTTA/10 Método de referencia: Standard Methods Ed21,2005 2540B
Bario Cromo Plomo Vanadio	mg/l	Metales, Plasma de Acoplamiento Inductivo (ICP-AES) Bario (0,5 a 30) mg/l Cromo (0,01 a 10) mg/l Plomo (0,01 a 10) mg/l Vanadio (0,05 a 10) mg/l	PEE/CESTTA/174 Método de referencia: EPA 200.7 ICP – AES Rev. 4.4 1994

5. RESULTADOS

5.1 DESFOGUE DE AGUAS DE ESCORRENTÍA Y AGUAS LLUVIA Y CUERPOS HÍDRICOS DE INMISIÓN

A continuación se presentan los resultados consolidados de los ensayos analíticos efectuados en las muestras mensuales, de descargas líquidas y cuerpos hídricos receptores y trimestrales en los puntos de control interno del acceso ecológico, colectadas en el área de Bloque 31 durante el segundo trimestre 2018: (abril, mayo y junio 2018).

TABLA 4: Resultados Analíticos de Muestras de Desfogues de Aguas Lluvia y Escorrentía

CÓDIGO DE PUNTO DE MUESTREO	UBICACIÒN	FECHA MUESTREO	pH (U de pH)	CE (uS / cm)	TPH (mg/l)	DQO (mg/l)	ST (mg/l)	Ba (mg/l)	Cr (mg/l)	Pb (mg/l)	V (mg/l)
LÍMITES MA	ÁXIMOS PERMISIE RAOHE	BLES TABLA 4a	5 <ph<9< td=""><td><2500</td><td><20</td><td><120</td><td><1700</td><td><5</td><td><0,5</td><td><0,5</td><td><1</td></ph<9<>	<2500	<20	<120	<1700	<5	<0,5	<0,5	<1
TRAMPA	APAIKA	1/4/2018	6,94	136,8	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
API - 1	PRODUCCIÓN	27/5/2018	7,39	57	0,06	<10	107,22	<0,3	<0,10	<0,15	<0,40
API-I	PRODUCCION	24/6/2018	7,05	103,6	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
TRAMPA	APAIKA	1/4/2018	7,23	102,6	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
API - 2	PRODUCCIÓN	27/5/2018	7,12	93,2	<0,05	<10	86,06	<0,3	<0,10	<0,15	<0,40
AFT-Z	PRODUCCION	24/6/2018	7,13	112	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
TRAMPA	APAIKA	1/4/2018	6,84	118,7	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
API - 3	PRODUCCIÓN	27/5/2018	7,5	83,9	<0,05	<10	70,16	<0,3	<0,10	<0,15	<0,40
AF1-3	PRODUCCION	24/6/2018	6,.79	108,4	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
TRAMPA	APAIKA	1/4/2018	7,06	142,8	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
API - 4	PRODUCCIÓN	27/5/2018	7,71	88	<0,05	<10	95,21	<0,3	<0,10	<0,15	<0,40
AI 1 - 4	TRODUCCION	24/6/2018	6,55	116,3	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
TRAMPA		1/4/2018	7,04	149,1	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
API ECB	ECB	27/5/2018	8,58	67,9	0,09	<10	37,12	<0,3	<0,10	<0,15	<0,40
7111200		24/6/2018	7	114,2	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
TRAMPA		1/4/2018	6,67	117,8	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
API NENKE	NENKE	27/5/2018	6,84	60,1	<0,05	<10	83,92	<0,3	<0,10	<0,15	<0,40
7.0 11401410		24/6/2018	6,61	110,8	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
TRAMPA		1/4/2018	6,77	104,5	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05
API ZECH	ZECH	27/5/2018	8,08	38,4	<0,05	<10	30,65	<0,3	<0,10	<0,15	<0,40
		24/6/2018	6,88	107,5	<0.20	<30	<100	<0,5	<0,01	<0,01	<0,05

TABLA 5: Resultados Analíticos De Muestras Puntos de Control Interno en Cuerpos Hídricos

CÓDIGODE PUNTO	UBICACIÒN	FECHA	рН	CE	TPH	DQO	HAP's
DE MUESTREO	UDICACION	MUESTREO	(U de pH)	(uS / cm)	(mg/l)	(mg/l)	(mg/l)
LÍMITES MÁXIMOS	PERMISIBLES TABLA	4b RAOHE	6-8	<170	<0,5	<30	< 0,0003
PUNTO INMISIÓN		8/4/2018	7,09	74,8	<0,20	<30	<0,00024
APAIKA	APAIKA	6/5/2018	6,96	73,8	<0,20	<30	<0,00024
AFAINA		3/6/2018	6,91	65,9	<0,20	<30	<0,00024
PUNTO INMISIÓN		8/4/2018	6,95	69,7	<0,20	<30	<0,00024
ECB	ECB	6/5/2018	6,22	98,4	0,14	25,48	<0,00016
LOD		3/6/2018	6,89	69	<0,20	<30	<0,00024
PUNTO INMISIÓN		8/4/2018	6,74	68,1	<0,20	<30	<0,00024
NENKE	NENKE	6/5/2018	6,5	14,96	0,14	<10	<0,00016
NENKE		3/6/2018	6,7	73,1	<0,20	<30	<0,00024
PUNTO INMISIÓN ZECH		8/4/2018	6,84	73	<0,05	<10	<0,00016
	ZECH	6/5/2018	7,11	66,1	<0,20	<30	<0,00024
ZEOH		3/6/2018	7,12	64,3	0,05	<10	<0,00016

TABLA 6: Resultados Analíticos de Muestras Puntos de Control Interno del Acceso Ecológico

CÓDIGODE PUNTO DE MUESTREO	UBICACIÒN	FECHA MUESTREO	pH (U de pH)	CE (uS / cm)	TPH (mg/l)	DQO (mg/l)	HAP's (mg/l)
LÍMITES MÁXIMO	S PERMISIBLES TABL	A 4b RAOHE	6-8	<170	<0,5	<30	< 0,0003
RÍO TIPUTINI	CRUCE RIO TIPUTINI	8/4/2018	6,34	22,7	0,06	<10	<0,00016
RÍO S/N NENKE	PUENTE RIO S/N NEKE	8/4/2018	6,87	66.9	<0,20	<30	<0,00024
RÍO PINDUYACU	PUENTE RIO PINDUYACU	8/4/2018	6,92	70,3	<0,20	<30	<0,00024
RÍO BEJUCO	PUENTE RIO BEJUCO	8/4/2018	7,01	69,5	<0,20	<30	<0,00024
RIO HUIRIRIMA	PUENTE RIO HUIRIRIMA	8/4/2018	6,83	72,4	<0,20	<30	<0,00024

Durante el trimestre, y únicamente para control interno se efectuó el muestreo del pozo de monitoreo subterráneo en ZECH, cuyos resultados se indican en la tabla a continuación, No se emite un análisis de cumplimiento pues la normativa ambiental determinada en el RAOHE, así como la existente en la legislación ambiental nacional no establece criterios de permisibilidad de concentraciones para aguas subterráneas

CÓDIGODE PUNTO DE MUESTREO	UBICACIÒN	FECHA MUESTREO	pH (U de pH)	CE (uS / cm)	TPH (mg/l)	DQO (mg/l)	HAP's (mg/l)
DO70 DE		8/4/2018	6,81	71,6	<0,20	<30	<0,00024
POZO DE MONITOREO	ZECH	6/5/2018	6,63	70,2	<0,20	<30	<0,00024
MONITOREO		3/6/2018	7,18	68,7	<0,20	<30	<0,00024

5.2 AGUAS NEGRAS Y GRISES

En cumplimiento de la normativa ambiental durante el segundo trimestre de 2018, se efectuó el muestreo semanal de descargas de aguas negras y grises generadas en la planta de tratamiento del Campamento ZECH cuyos resultados consolidados se muestran a continuación:

TABLA 7: Resultados Analíticos de Muestras de Aguas Negras y Grises

CÓDIGODE PUNTO DE MUESTREO	UBICACIÒN	FECHA MUESTREO	pH (Unidades de pH)	DQO (mg/l)	CI (mg/l)	Coliformes (col/100ml)
LÍMITES MÁXIMOS PERMISIBLES TABLA 5 RAOHE				<80	<2,0	<1000
		01/4/2018	6,89	<30	<0,1	<1
		08/4/2018	6,67	<30	<0,1	<1
		15/4/2018	6,8	<30	<0,1	<1
		22/4/2018	7,02	<30	<0,1	<1
PLANTA DE TRATAMIENTO		29/4/2018	6,74	<30	<0,1	<1
PLANTA DE TRATAMIENTO DE AGUAS NEGRAS Y GRISES DE CAMPAMENTO		06/5/2018	5,23	16,12	<0,30	10
	ZECH	13/5/2018	5,35	<10	<0,30	40
		20/5/2018	6,58	<30	<0,1	<1
PERMANENTE		27/5/2018	7,25	<30	<0,1	<1
		03/6/2018	6,87	<30	<0,1	<1
		10/6/2018	6,94	<30	<0,1	<1
		17/6/2018	6,53	<30	<0,1	<1
		24/6/2018	6,82	<30	<0,1	<1

Las descargas de aguas negras y grises provenientes de Apaika, son reinyectadas en el pozo Apaika 001X. En el ANEXO 5 se adjuntan las actas de reinyección y el reporte acumulado de volúmenes inyectados en el pozo Apaika 001X, el mismo que describe los parámetros para la inyección correspondiente al período abril – junio 2018

6. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

En lo que se refiere a la toma de la muestra en el periodo abril - junio 2018, en el área del Bloque 31 en los puntos de Descarga e Inmisión en todos los puntos de control, esta actividad se realizó con normalidad.

Luego del análisis de los resultados obtenidos y su comparación con los límites máximos permisibles establecidos para cada parámetro en el Reglamento Sustitutivo del Reglamento Ambiental para las Operaciones Hidrocarburíferas en el Ecuador (Decreto Ejecutivo 1215), se observa que todos los puntos de control de descarga de Aguas Negras y Grises, monitoreados en el segundo trimestre de 2018 cumplen con los límites permisibles de los parámetros establecidos en dicho reglamento para la tabla 5.

En cuanto a los límites establecidos en las tablas 4a y 4b del anexo 2 del RAOHE, se establece que los resultados analíticos de las muestras de desfogue de aguas lluvia y escorrentía y puntos de control interno del acceso ecológico cumplen la normativa.

7. CONCLUSIONES Y RECOMENDACIONES

Mantener los procedimientos implantados y revisarlos periódicamente con el objeto de que los valores que se reportan mantengan la tendencia de cumplimiento de la norma de control.

ANEXO 1. INFORMES DE RESULTADOS

RESULTADOS AGUAS LLUVIA Y ESCORRENTÍA

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1709-18

ST: 382–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 12 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/02
 07:30

 FECHA DE MUESTREO:
 2018/04/01
 16:15

 FECHA DE ANÁLISIS:
 2018/04/02 - 2018/04/12

TIPO DE MUESTRA:

CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

PUNTO DE MUESTREO:

Agua residual

LAB-AA-1709-18

APAIKA

Trampa API #1

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C **RESULTADOS ANALÍTICOS:**

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,94	±0,2%	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	136,8	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±12%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
---------	--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados por el cliente.

RESPONSABLE DEL INFORME:

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1710-18

ST: 382–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 12 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/02
 07:30

 FECHA DE MUESTREO:
 2018/04/01
 16:20

 FECHA DE ANÁLISIS:
 2018/04/02 - 2018/04/12

TIPO DE MUESTRA:

CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

PUNTO DE MUESTREO:

Agua residual

LAB-AA-1710-18

APAIKA

Trampa API #2

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C **RESULTADOS ANALÍTICOS:**

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,23	±0,2%	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	102,6	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±12%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
---------	--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados por el cliente.

RESPONSABLE DEL INFORME:

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1711-18

ST: 382–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 12 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/02
 07:30

 FECHA DE MUESTREO:
 2018/04/01
 16:25

 FECHA DE ANÁLISIS:
 2018/04/02 - 2018/04/12

TIPO DE MUESTRA:

CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

PUNTO DE MUESTREO:

Agua residual

LAB-AA-1711-18

APAIKA

Trampa API #3

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C **RESULTADOS ANALÍTICOS:**

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,84	±0,2%	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	118,7	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±12%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
---------	--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados por el cliente.

RESPONSABLE DEL INFORME:

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1712-18

ST: 382–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 12 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/02
 07:30

 FECHA DE MUESTREO:
 2018/04/01
 16:30

 FECHA DE ANÁLISIS:
 2018/04/02 - 2018/04/12

TIPO DE MUESTRA:

CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

PUNTO DE MUESTREO:

Agua residual

LAB-AA-1712-18

APAIKA

Trampa API #4

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C **RESULTADOS ANALÍTICOS:**

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,06	±0,2%	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	142,8	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±12%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
---------	--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados por el cliente.

RESPONSABLE DEL INFORME:

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1714-18

ST: 382–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 12 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/02
 07:30

 FECHA DE MUESTREO:
 2018/04/01
 17:30

 FECHA DE ANÁLISIS:
 2018/04/02 - 2018/04/12

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB-AA-1714-18

CÓDIGO DE LA EMPRESA: ECB

PUNTO DE MUESTREO: Trampa API #1

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C **RESULTADOS ANALÍTICOS:**

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,04	±0,2%	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	149,1	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±12%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

LABORATORIO DE ENSAYOS	

Vanadio PEE/CESTTA/17- EPA 200.7 / EPA 3015a ICP		<0,05	±22%	<1
--	--	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados por el cliente.

RESPONSABLE DEL INFORME:

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1713-18

ST: 382–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 12 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/02
 07:30

 FECHA DE MUESTREO:
 2018/04/01
 17:00

 FECHA DE ANÁLISIS:
 2018/04/02 - 2018/04/12

TIPO DE MUESTRA:

CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

PUNTO DE MUESTREO:

Agua residual

LAB-AA-1713-18

NENKE

Trampa API #1

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C **RESULTADOS ANALÍTICOS:**

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,67	±0,2%	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	117,8	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±12%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados por el cliente.

RESPONSABLE DEL INFORME:

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1715-18

ST: 382–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 12 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/02
 07:30

 FECHA DE MUESTREO:
 2018/04/01
 18:15

 FECHA DE ANÁLISIS:
 2018/04/02 - 2018/04/12

TIPO DE MUESTRA:

CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

PUNTO DE MUESTREO:

Agua residual

LAB-AA-1715-18

ZECH

Trampa API #1

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C **RESULTADOS ANALÍTICOS:**

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,77	±0,2%	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	104,5	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±12%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA	mg/L	<0,05	±22%	<1
	3015a ICP				

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados por el cliente.

RESPONSABLE DEL INFORME:

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6-2881105

INFORME DE ENSAYO N°: 119 240

SPS: 18 - 2 015 Análi

Análisis de agua

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 05 de junio de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

Código de LabSuIdentificación de la muestra.

a 10 044......Muestra de Agua Apaika. Código: TRMPA API #1,

2.- Resultados / Parámetros y métodos/ referencias:

Ítem	Parámetros	Unidad	a 10 044	Tabla # 4 a	PEE-LABSU	Métodos / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	7,39	5,0 - 9,0	PEE-LABSU-02	SM 4500-H+ B	± 0,05
2	Conductividad eléctrica	uS/cm	57,0	< 2 500	PEE-LABSU-03	SM 2510 B	±8%
3	Sólidos totales	mg/L	107,22	< 1:700	PEE-LABSU-49	SM 2540 B	± 10%
4	Demanda química de oxígeno	mg/L	< 10,00	/< 120	PEE-LABSU-89	HACH 8000	±17%
5	Bario	mg/L	< 0,30	/<5:	PEE-LABSU-22	SM 3030 B, 3111 D	± 32%
6	Cromo (total)	mg/L	< 0,10	< 0,5	PEE-LABSU-21	SM 3030 B, 3111 B	± 40%
7	Plomo	mg/L	< 0,15	< 0,5	PEE-LABSU-24	SM 3030 B, 3111 B	±30%
8	Vanadio	mg/L	< 0,40	< 1	PEE-LABSU-25	SM 3030 B, 3111 D	±30%
9	Hidrocarburos totales	mg/L	0,06	< 20	PEE-LABSU-10	EPA 418.1	±13%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburiferas Decreto No.1215, febrero 2001:

Tabla # 4 a: Límites permisibles en el punto de descarga de efluentes (descargas líquidas).

3.- Responsables del Informe:

Autorización: Yéc. Andres Solis Plaza.

DIRECTOR TECNICO

Ing. Viviana Lara Villegas.

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio.

Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE.

MC2201-05

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO Nº: 119 241

SPS: 18 - 2 015

Análisis de agua

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 05 de junio de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

Ing. Eddie Zambrano. ..2 018 05 27 15:15 .2 018 05 28 12:00. Fecha hora ingreso al Laboratorio Fecha del análisis... .2 018 05 28 a 2 018 06 05. Condiciones Ambientales de Análisis..T. Máx: 26,5°C T. Mín: 21,5°C

Código de LabSu... Identificación de la muestra.

a 10 045.....

.....Muestra de Agua Apaika. Código: TRMPA/API#2

2.- Resultados / Parámetros y métodos/ referencias:

Ítem	Parámetros	Unidad	a 10 045	Tabla #4a	PEE-LABSU	Métodos / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	7,12	5,0 - 9,0	PEE-LABSU-02	SM 4500-H+ B	± 0,05
2	Conductividad eléctrica	uS/cm	93,2	< 2 500	PEE-LABSU-03	SM 2510 B	±8%
3	Sólidos totales	mg/L	86,06	< 1.700	PEE-LABSU-49	SM 2540 B	± 10%
4	Demanda química de oxígeno	mg/L	< 10,00	/< 120	PEE-LABSU-89	HACH 8000	± 17%
5	Bario	mg/L	< 0,30	/<5	PEE-LABSU-22	SM 3030 B, 3111 D	±32%
6	Cromo (total)	mg/L	< 0,10	< 0,5	PEE-LABSU-21	SM 3030 B, 3111 B	± 40%
7	Plomo	mg/L	< 0,15	< 0,5.	PEE-LABSU-24	SM 3030 B, 3111 B	±30%
8	Vanadio	mg/L	< 0,40	< 1	PEE-LABSU-25	SM 3030 B, 3111 D	±30%
9	Hidrocarburos totales	mg/I.	< 0,05	≥ 20	PEE-LABSU-10	EPA 418.1	±13%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburíferas Decreto No.1215, febrero 2001: Tabla # 4 a: Límites permisibles en el punto de descarga de efluentes (descargas líquidas).

3.- Responsables del Informe:

Autorización: <u>Téc. Andres Solis Plaza.</u>
DIRECTOR TECNICO

Ing. Viviana Lara Villegas. RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio.

Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE.

MC2201-05

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO N°: 119 242

SPS: 18 - 2 015 Análisis de agua

Acreditación N° OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 05 de junio de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

a 10 046......Muestra de Agua Apaika. Código: TRMPA API #3,

2.- Resultados / Parámetros y métodos/ referencias:

Ítem	Parámetros	Unidad	a 10 046	Tabla #4a	PEE-LABSU	Métodos / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	7,50	5,0 - 9,0	PEE-LABSU-02	SM 4500-H+ B	± 0,05
2	Conductividad eléctrica	uS/cm	83,9	< 2 500	PEE-LABSU-03	SM 2510 B	±8%
3	Sólidos totales	mg/L	70,16	< 1.700	PEE-LABSU-49	SM 2540 B	± 10%
4	Demanda química de oxígeno	mg/L	< 10,00	/<120	PEE-LABSU-89	HACH 8000	± 17%
5	Bario	mg/L	< 0,30	1/<5	PEE-LABSU-22	SM 3030 B, 3111 D	±32%
6	Cromo (total)	mg/L	< 0,10	< 0,5	PEE-LABSU-21	SM 3030 B, 3111 B	± 40%
7	Plomo	mg/L	< 0,15.	< 0,5	PEE-LABSU-24	SM 3030 B, 3111 B	±30%
8	Vanadio	mg/L	< 0,40	< 1	PEE-LABSU-25	SM 3030 B, 3111 D	±30%
9	Hidrocarburos totales	mg/L	< 0,05	< 20	PEE-LABSU-10	EPA 418.1	±13%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburiferas Decreto No.1215, febrero 2001:

Tabla # 4 a: Límites permisibles en el punto de descarga de efluentes (descargas líquidas).

3.- Responsables del Informe:

Autorización: Tec. Andres Solis Plaza.

DIRECTOR TECNICO

Ing. Viviana Lara Villegas.

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio. Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE.

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador

Telefax:(593) 6- 2881105 <u>INFORME DE</u> <u>ENSAYO N°: 119 243</u>

SPS: 18 - 2 015

Análisis de agua

Acreditación N° OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 05 de junio de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

2.- Resultados / Parámetros y métodos/ referencias:

Ítem	Parámetros	Unidad	a 10 047	Tabla # 4 a	PEE-LABSU	Métodos / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	7,71	5,0 - 9,0	PEE-LABSU-02	SM 4500-H+ B	± 0,05
2	Conductividad eléctrica	uS/cm	88,0	< 2 500	PEE-LABSU-03	SM 2510 B	±8%
3	Sólidos totales	mg/L	95,21	< 1.700	PEE-LABSU-49	SM 2540 B	± 10%
4	Demanda química de oxígeno	mg/L	< 10,00	/< 120	PEE-LABSU-89	HACH 8000	± 17%
5	Bario	mg/L	< 0,30	/<5	PEE-LABSU-22	SM 3030 B, 3111 D	±32%
6	Cromo (total)	mg/L	< 0,10	< 0,5	PEE-LABSU-21	SM 3030 B, 3111 B	± 40%
7	Plomo	mg/L	< 0,15	< 0,5.	PEE-LABSU-24	SM 3030 B, 3111 B	±30%
8	Vanadio	mg/L	< 0,40	< 1	PEE-LABSU-25	SM 3030 B, 3111 D	±30%
9	Hidrocarburos totales	mg/L	< 0,05	< 20	PEE-LABSU-10	EPA 418.1	±13%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburiferas Decreto No.1215, febrero 2001:

Tabla # 4 a: Limites permisibles en el punto de descarga de efluentes (descargas líquidas).

3.- Responsables del Informe:

Autorización: Téc. Andres Solis Plaza.

DIRECTOR TECNICO

LABSU REPORTED

Ing. Viviana Lara Villegas. RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio. Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE.

MC2201-05

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO N°: 119 245

SPS: 18 - 2 015

Análisis de agua

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 05 de junio de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

Recogidas por.....Fecha hora de toma de muestra.. .Ing. Eddie Zambrano. .2 018 05 27 16:40. Fecha hora ingreso al Laboratorio2 018 05 28 12:00. Fecha del análisis. .2 018 05 28 a 2 018 06 05. Condiciones Ambientales de Análisis..T. Máx: 26,5°C T. Mín: 21,5°C Código de LabSu... .Identificación de la muestra.

a 10 049.....Muestra de Agua ECB. Código: ECB.

2.- Resultados / Parámetros y métodos/ referencias:

Ítem	Parámetros	Unidad	a 10 049	Tabla # 4 a	PEE-LABSU	Métodos / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	8,58	5,0 - 9,0	PEE-LABSU-02	SM 4500-H+ B	± 0,05
2	Conductividad eléctrica	uS/cm	67,9	< 2 500	PEE-LABSU-03	SM 2510 B	±8%
3	Sólidos totales	mg/L	37,12	< 1.700	PEE-LABSU-49	SM 2540 B	± 10%
4	Demanda química de oxígeno	mg/L	< 10,00	/< 120	PEE-LABSU-89	HACH 8000	± 17%
5	Bario	mg/L	< 0,30	/<5	PEE-LABSU-22	SM 3030 B, 3111 D	±32%
6	Cromo (total)	mg/L	< 010	< 0,5	PEE-LABSU-21	SM 3030 B, 3111 B	± 40%
7	Plomo	mg/L	< 0,15	< 0,5	PEE-LABSU-24	SM 3030 B, 3111 B	±30%
8	Vanadio	mg/L	< 0,40	< 1	PEE-LABSU-25	SM 3030 B, 3111 D	±30%
9	Hidrocarburos totales	mg/L	0,09	< 20	PEE-LABSU-10	EPA 418.1	±13%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburíferas Decreto No.1215, febrero 2001: Tabla # 4 a: Límites permisibles en el punto de descarga de efluentes (descargas líquidas).

3.- Responsables del Informe:

Autorización: Téc, Andres Solis Plaza.

DIRECTOR TECNICO

Ing. Viviana Lara Villegas. RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio.

Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE.

MC2201-05

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO N°: 119 244

SPS: 18 - 2 015

Análisis de agua

Acreditación № OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 05 de junio de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

Código de LabSuIdentificación de la muestra.

a 10 048......Muestra de Agua Nenke. Código: NENKE,

2.- Resultados / Parámetros y métodos/ referencias:

Ítem	Parámetros	Unidad	a 10 048	Tabla # 4 a	PEE-LABSU	Métodos / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	6,84	5,0 - 9,0	PEE-LABSU-02	SM 4500-H+ B	± 0,02
2	Conductividad eléctrica	uS/cm	60,1	< 2 500	PEE-LABSU-03	SM 2510 B	±8%
3	Sólidos totales	mg/L	83,92	< 1.700	PEE-LABSU-49	SM 2540 B	± 10%
4	Demanda química de oxígeno	mg/L	< 10,00	/< 120	PEE-LABSU-89	HACH 8000	± 17%
5	Bario	mg/L	< 0,30	/ /< 5	PEE-LABSU-22	SM 3030 B, 3111 D	±32%
6	Cromo (total)	mg/L	< 0,10	< 0,5	PEE-LABSU-21	SM 3030 B, 3111 B	± 40%
7	Plomo	mg/L	< 0,15	< 0,5	PEE-LABSU-24	SM 3030 B, 3111 B	±30%
8	Vanadio	mg/L	< 0,40	< 1	PEE-LABSU-25	SM 3030 B, 3111 D	±30%
9	Hidrocarburos totales	mg/L	< 0,05	< 20	PEE-LABSU-10	EPA 418.1	±13%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburíferas Decreto No.1215, febrero 2001:

Tabla # 4 a: Límites permisibles en el punto de descarga de efluentes (descargas líquidas).

3.- Responsables del Informe:

Autorización: Yec. Andres Solis Plaza.

DIRECTOR TECNICO

LABSU S

Ing. Viviana Lara Villegas. RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio. Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE.

MC2201-05

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO N°: 119 246

SPS: 18 - 2 015

Análisis de agua

Acreditación N° OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 05 de junio de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano. Bloque 31.

Dirección:

1.- Datos generales:

2.- Resultados / Parámetros y métodos/ referencias:

Ítem	Parámetros	Unidad	a 10 050	Tabla 4 a	PEE-LABSU	Métodos / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	8,08	5,0 - 9,0	PEE-LABSU-02	SM 4500-H+ B	± 0,05
2	Conductividad eléctrica	uS/cm	38,4	< 2 500	PEE-LABSU-03	SM 2510 B	±8%
3	Sólidos totales	mg/L	30,65	< 1.700	PEE-LABSU-49	SM 2540 B	± 10%
4	Demanda química de oxígeno	mg/L	< 10,00	/< 120	PEE-LABSU-89	HACH 8000	± 17%
5	Bario	mg/L	< 0,30	/<5	PEE-LABSU-22	SM 3030 B, 3111 D	±32%
6	Cromo (total)	mg/L	< 0,10	< 0,5	PEE-LABSU-21	SM 3030 B, 3111 B	± 40%
7	Plomo	mg/L	< 0,15	< 0,5	PEE-LABSU-24	SM 3030 B, 3111 B	±30%
8	Vanadio	mg/L	< 0,40	< 1	PEE-LABSU-25	SM 3030 B, 3111 D	±30%
9	Hidrocarburos totales	mg/L	< 0,05	< 20	PEE-LABSU-10	EPA 418.1	±13%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburíferas Decreto No.1215, febrero 2001:

Tabla # 4 a: Límites permisibles en el punto de descarga de efluentes (descargas líquidas).

3.- Responsables del Informe:

Autorización:

Téc. Andres Solis Plaza

Ing. Viviana Lara Villegas

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio. Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE.

MC2201-05

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2062-18

ST: 503–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 29 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/25
 07:30

 FECHA DE MUESTREO:
 2018/06/24
 14:50

 FECHA DE ANÁLISIS:
 2018/06/25 - 2018/06/29

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB- AA -2062-18

CÓDIGO DE LA EMPRESA:

Trampa API 1

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Agua residual

LAB- AA -2062-18

Trampa API 1

B-31-Apaika

Físico – Químico

Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,05	±0,2	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	103,6	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±25%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA	mg/L	<0,05	±22%	<1
	3015a ICP				

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados a petición del cliente.

RESPONSABLE DEL INFORME:

RESPONSABLE TÉCNICO

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2063-18

ST: 503–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 29 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/25
 07:30

 FECHA DE MUESTREO:
 2018/06/24
 14:55

 FECHA DE ANÁLISIS:
 2018/06/25 - 2018/06/29

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB- AA -2063-18

CÓDIGO DE LA EMPRESA:

Trampa API 2

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Agua residual

LAB- AA -2063-18

Trampa API 2

B-31-Apaika

Físico – Químico

Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,13	±0,2	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	112,0	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±25%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
---------	--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados a petición del cliente.

RESPONSABLE DEL INFORME:

RESPONSABLE TÉCNICO

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2064-18

ST: 503–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 29 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/25
 07:30

 FECHA DE MUESTREO:
 2018/06/24
 14:59

 FECHA DE ANÁLISIS:
 2018/06/25 - 2018/06/29

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB- AA -2064-18

CÓDIGO DE LA EMPRESA:

Trampa API-3

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Agua residual

LAB- AA -2064-18

Trampa API-3

B-31-Apaika

Físico – Químico

Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,79	±0,2	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	108,4	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±25%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
---------	--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados a petición del cliente.

RESPONSABLE DEL INFORME:

RESPONSABLE TÉCNICO

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2065-18

ST: 503–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 29 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/25
 07:30

 FECHA DE MUESTREO:
 2018/06/24
 15:10

 FECHA DE ANÁLISIS:
 2018/06/25 - 2018/06/29

TIPO DE MUESTRA:

CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Agua residual

LAB- AA -2065-18

Trampa API 4

B-31-Apaika

Físico – Químico

Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,55	±0,2	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	116,3	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±25%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA	mg/L	<0,05	±22%	<1
	3015a ICP				

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados a petición del cliente.

RESPONSABLE DEL INFORME:

RESPONSABLE TÉCNICO

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2067-18

ST: 503–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 29 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/25
 07:30

 FECHA DE MUESTREO:
 2018/06/24
 15:30

 FECHA DE ANÁLISIS:
 2018/06/25 - 2018/06/29

TIPO DE MUESTRA:

CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

Agua residual

LAB- AA -2067-18

Trampa API ECB

B-31-ECB

Físico – Químico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,00	±0,2	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	114,2	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±25%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados a petición del cliente.

RESPONSABLE DEL INFORME:

RESPONSABLE TÉCNICO

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2066-18

ST: 503–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 29 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/25
 07:30

 FECHA DE MUESTREO:
 2018/06/24
 15:20

 FECHA DE ANÁLISIS:
 2018/06/25 - 2018/06/29

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB- AA -2066-18

CÓDIGO DE LA EMPRESA:

Trampa API NENKE

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Agua residual

LAB- AA -2066-18

Trampa API NENKE

B-31-NENKE

Físico – Químico

Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,61	±0,2	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	110,8	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±25%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,05	±22%	<1
--	------	-------	------	----

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados a petición del cliente.

RESPONSABLE DEL INFORME:

RESPONSABLE TÉCNICO

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2068-18

ST: 503–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 29 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/25
 07:30

 FECHA DE MUESTREO:
 2018/06/24
 15:40

 FECHA DE ANÁLISIS:
 2018/06/25 - 2018/06/29

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB- AA -2068-18

CÓDIGO DE LA EMPRESA:

Trampa API ZECH

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Agua residual

LAB- AA -2068-18

Trampa API ZECH

B-31-ZECH

Físico – Químico

Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,88	±0,2	5-9
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	107,5	±8%	<2500
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<20
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<120
Sólidos Totales	PEE/CESTTA/10 Standard Methods No. 2540 B	mg/L	<100	±25%	<1700
Bario	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,5	±15%	<5
Cromo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±17%	<0,5
Plomo	PEE/CESTTA/174 EPA 200.7 / EPA 3015a ICP	mg/L	<0,01	±18%	<0,5

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

Vanadio	PEE/CESTTA/174 EPA 200.7 / EPA	mg/L	<0,05	±22%	<1
	3015a ICP				

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4a de la RAOHE: Límites permisibles en el punto de descarga de efluentes (descargas liquidas). Solicitados a petición del cliente.

RESPONSABLE DEL INFORME:

RESPONSABLE TÉCNICO

RESULTADOS CONTROL INTERNO CUERPO HIDRICOS

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1041-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 19 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 15:10

 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/19

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-1041-18

CÓDIGO DE LA EMPRESA:

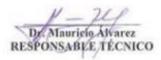
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,09	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	74,8	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2017-18

ST: 476–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 16 de mayo del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/05/07
 07:30

 FECHA DE MUESTREO:
 2018/05/06
 14:50

 FECHA DE ANÁLISIS:
 2018/05/07 - 2018/05/16

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-2017-18

CÓDIGO DE LA EMPRESA:

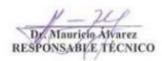
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,96	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	73,8	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2035-18

487-18 ANÁLISIS DE AGUAS

PETROAMAZONAS E.P./ BLOQUE 31 Nombre Peticionario:

Pablo Ganchala Atn.

Av. República Oe1-162 y Teresa de Cepeda Dirección:

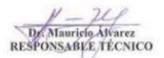
Quito- Pichincha

FECHA: 14 de Junio del 2018

NUMERO DE MUESTRAS:

FECHA Y HORA DE RECEPCIÓN EN LAB: 2018/06/04 07:30 **FECHA DE MUESTREO:** 2018/06/03 15:20 2018/06/04 - 2018/06/14 FECHA DE ANÁLISIS:

TIPO DE MUESTRA: Agua natural CÓDIGO CESTTA: LAB-AA-2035-18 CÓDIGO DE LA EMPRESA: Punto Inmisión **PUNTO DE MUESTREO:** B-31 Apaika ANÁLISIS SOLICITADO: Físico – Químico PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,91	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	65,9	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1043-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 19 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 15:00

 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/19

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-1043-18

CÓDIGO DE LA EMPRESA:

Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Agua natural

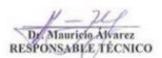
LAB-AA-1043-18

Punto Inmisión

B-31 ECB

Físico – Químico

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,95	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	69,7	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	Standard Methods No. 1		<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO No: 119 077

SPS: 18 - 1909

Análisis de agua

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 16 de mayo de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Bloque 31. Dirección:

1.- Datos generales:

Recogidas por .. . Ing. Eddie Zambrano. Fecha hora de toma de muestra 2 018 05 06 15:30. Fecha hora ingreso al Laboratorio 2 018 05 06 18:00. .2 018 05 06 a 2 018 05 16. Fecha del análisis... Condiciones Ambientales de Análisis.. T. Máx: 26,5°C T. Mín: 21,5°C Código de LabSu... Identificación de la muestra.

a 9 873. Muestra de Agua Inmisión ECB. Código: ECB.

2.- Resultados / Parámetros y métodos / Referencias:

Ítem	Análisis solicitados	Unidad	a 9 873	Tabla #4b	PEE-LABSU	Método / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	6,22	6,0 - 8,0	PEE-LABSU-02	SM 4500-H+ B	± 0,02
2	Conductividad eléctrica	uS/cm	98,4	K170	PEE-LABSU-03	SM 2510 B	± 8%
3	Demanda Química de Oxigeno	mg/L	25,48 🐍	< 30	PEE-LABSU-89	HACH 8000	± 17%
4	Hidrocarburos totales	mg/L	0,14	< 0,5	PEE-LABSU-10	EPA 418.1	± 13%
5	Hidrocarburos aromáticos policíclicos	mg C/L	< 0,00016	< 0,0003	PEE-LABSU-15	EPA 8310, 3510 C, 3630 C	± 12%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburiferas, Decreto 1215, febrero del 2001;

Tabla # 4 b; Límites permisiblés en el punto de control en el cuerpo receptor (inmisión).

2.1.- Comentario: El resultado de Hap's es la sumatoria de: Fluoranteno, Benzo (b) Fluoranteno, Benzo (k) Fluoranteno, Benzo (a) Pireno, Benzo (g,h,i) Pirileno e Indeno-Pireno.

3.- Responsables del Informe:

Autorización:

Ing. Gilberto Lopez Perez

DIRECTOR TECNICO

Téc. Andres Solis Plaza RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio.

Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE

MC2201-05

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2037-18

ST: 487–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 14 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/04
 07:30

 FECHA DE MUESTREO:
 2018/06/03
 16:30

 FECHA DE ANÁLISIS:
 2018/06/04 - 2018/06/14

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-2037-18

CÓDIGO DE LA EMPRESA:

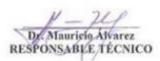
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,89	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	69,0	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	Standard Methods No		<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1042-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 19 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 15:25

 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/19

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-1042-18

CÓDIGO DE LA EMPRESA:

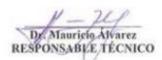
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,74	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	68,1	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO Nº: 119 076

SPS: 18 - 1 909

Análisis de agua

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 16 de mayo de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

2.- Resultados / Parámetros y métodos / Referencias:

					The state of the s		
Ítem	Análisis solicitados	Unidad	a 9 872	Tabla #4b	PEE-LABSU	Método / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	6,50	6,0 8,0	PEE-LABSU-02	SM 4500-H+ B	± 0,02
2	Conductividad eléctrica	uS/cm	14,96	<170	PEE-LABSU-03	SM 2510 B	± 8%
3	Demanda Química de Oxigeno	mg/L	< 10,00	< 30	PEE-LABSU-89	HACH 8000	± 17%
4	Hidrocarburos totales	mg/L	0,14	< 0,5	PEE-LABSU-10	EPA 418.1	± 13%
5	Hidrocarburos aromáticos policíclicos	mg C/L,	< 0,00016	< 0,0003	PEE-LABSU-15	EPA 8310, 3510 C, 3630 C	± 12%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburíferas, Decreto 1215, febrero del 2001;

Tabla # 4 b: Límites permisibles en el punto de control en el cuerpo receptor (inmisión).

2.1.- Comentario: El resultado de Hap's- es la sumatoria de: Fluoranteno, Benzo (b) Fluoranteno, Benzo (a) Pireno, Benzo (g,h,i) Pirileno e Indeno-Pireno.

3.- Responsables del Informe:

Autorización:

Ing. Gilberto Lopez Pérez

DIRECTOR TECNICO

Téc. Andres Solis Plaza

RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio.

Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE

MC2201-05

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2036-18

ST: 487–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 14 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/04
 07:30

 FECHA DE MUESTREO:
 2018/06/03
 15:50

 FECHA DE ANÁLISIS:
 2018/06/04 - 2018/06/14

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-2036-18

CÓDIGO DE LA EMPRESA:

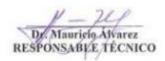
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,70	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	73,1	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	Standard Methods No. 1		<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO Nº: 118 662

SPS: 18 - 1 783

Análisis de agua

Acreditación Nº DAE LE 2C 67-903 LABORATORIO DE ENSAYOS

Coca, 19 de abril de 2018

PETROAMAZONAS EP.

Atn.

Ing. Maryuri Jaramillo.

Dirección:

Bloque 31.

1.- Datos generales:

Condiciones Ambientales de Análisis. T. Máx: 26,5°C T. Mín: 21,5°C

Código de LabSu Identificación de la muestra.

a 9 698 Muestra de Agua Inmisión. Código: ZECH.

2.- Resultados / Parámetros y métodos / Referencias;

)	11		
Ítem	Análisis solicitados	Unidad	a 9 698	Tabla #4b	PEE-LABSU	Método / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	6,84	6,0 - 8,0	PEE-LABSU-02	SM 4500-H+ B	± 0,02
2	Conductividad eléctrica	uS/cm	73,0	/<170	PEE-LABSU-03	SM 2510 B	± 8%
3	Demanda Química de Oxigeno	mg/L	< 10,00	< 30	PEE-LABSU-89	HACH 8000	± 17%
4	Hidrocarburos totales	mg/L	< 0,05	< 0,5	PEE-LABSU-10	EPA 418.1	± 13%
5	Hidrocarburos aromáticos policíclicos	mg C/L	< 0,00016	< 0,0003	PEE-LABSU-15	EPA 8310, 3510 C, 3630 C	± 12%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburiferas, Decreto 1215, febrero del 2001; Tabla # 4 b: Limites permisibles en el punto de control en el cuerpo receptor (inmisión).

2.1.- Comentario: El resultado de Flap's es la sumatoria de: Fluoranteno, Benzo (b) Fluoranteno, Benzo (c) Pireno, Benzo (g,h,i) Pirileno e Indeno-Pireno.

3.- Responsables del Informe:

Autorización Ing

Ing. Gilberto López Pérez DIRECTOR TECNICO Téc. Andres Solis Plaza RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio.

Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE

MC2201-05

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2018-18

476-18 ANÁLISIS DE AGUAS

PETROAMAZONAS E.P./ BLOQUE 31 Nombre Peticionario:

Pablo Ganchala Atn.

Av. República Oe1-162 y Teresa de Cepeda Dirección:

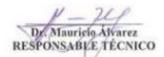
Quito- Pichincha

FECHA: 16 de mayo del 2018

NUMERO DE MUESTRAS:

FECHA Y HORA DE RECEPCIÓN EN LAB: 2018/05/07 07:30 **FECHA DE MUESTREO:** 2018/05/06 15:50 2018/05/07 - 2018/05/16 FECHA DE ANÁLISIS:

TIPO DE MUESTRA: Agua natural CÓDIGO CESTTA: LAB-AA-2018-18 CÓDIGO DE LA EMPRESA: Punto Inmisión **PUNTO DE MUESTREO:** B-31 Zech ANÁLISIS SOLICITADO: Físico - Químico PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,11	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	66,1	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	Standard Methods No. 1		<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax.(593) 6- 2881105

INFORME DE ENSAYO Nº: 119 581

SPS: 18 - 2 133 Análisis de agua

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 14 de junio de 2018

PETROAMAZONAS EP.

Atn.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

Recogidas por... Ing. Darwin Barre. Fecha hora de toma de muestra... .2 018 06 03 18:00. Fecha hora ingreso al Laboratorio 2 018 06 04 12:00. Fecha del análisis2 018 06 04 a 2 018 06 14. Condiciones Ambientales de Análisis..T. Máx: 26,5°C T. Mín: 21,5°C Código de LabSu...

Identificación de la muestra.

Muestra de Agua Inmisión. Código: ZECH. a 10 363..

2.- Resultados / Parámetros y métodos / Referencias:

Ítem	Análisis solicitados	Unidad	a 10 363	Tabla #4b	PEE-LABSU	Método / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	7,12	6,0 - 8,0	PEE-LABSU-02	SM 4500-H+ B	± 0,05
2	Conductividad eléctrica	uS/cm	64,3	< 170	PEE-LABSU-03	SM 2510 B	± 5%
3	Demanda Química de Oxigeno	mg/L	< 10.00	< 30	PEE-LABSU-89	HACH 8000	± 17%
4	I lidrocarburos totales	mg/L	0,05	< 0,5	PEE-LABSU-10	EPA 418.1	± 13%
5	Hidrocarburos aromáticos policíclicos	mg C/L	< 0,00016	< 0,0003	PEE-LABSU-15	EPA 8310, 3510 C, 3630 C	± 12%

Fuente: Reglamento Ambiental para lás Operaciones Hidrocarburiferas, Decreto 1215, febrero del 2001; Tabla # 4 b; Límites permisibles en el punto de control en el cuerpo receptor (inmisión).

2.1.- Comentario: El resultado de Hap's es la sumatoria de: Fluoranteno, Benzo (b) Fluoranteno, Benzo (k) Fluoranteno, Benzo (a) Pireno, Benzo (g,h,i) Pirileno e Indeno-Pireno.

3.- Responsables del Informe:

Autorización: Téc. Andres Solis Plaza. DIRECTOR TECNICO

Ing. Viviana Lara Villegas.

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio. Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE

MC2201-05

CONTROL INTERNO DEL ACCESO ECOLÓGICO

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO N°: 118 665

Servicio de Acreditación

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

SPS: 18 - 1 783

Análisis de agua

Coca, 19 de abril de 2018

PETROAMAZONAS EP.

Atn.

Ing. Maryuzi Jaramillo.

Dirección:

Bloque 31.

1.- Datos generales:

Recogidas por .. Sr. Darwin Barre. Fecha hora de toma de muestra... 2 018 04 08 Fecha hora ingreso al Laboratorio 2 018 04 09 14:30.

Fecha del análisis... 2 018 04 09 a 2 018 04 19.

Condiciones Ambientales de Análisis.. T. Máx: 26,5°C T. Mín: 21,5°C Identificación de la muestra. Código de LabSu...

Muestra de Agua Inmisión Río. Código: TIPUTINI

2.- Resultados / Parámetros y métodos / Referencias:

Ítem	Análisis solicitados	Unidad	a 9 701	Tabla #4b	PEE-LABSU	Método / Norma Referencia	Incertidumbre (K = 2)
1	Potencial hidrógeno	~	6,34	6,0 -8,0	PEE-LABSU-02	SM 4500-H+ B	± 0,02
2	Conductividad eléctrica	uS/cm	22,7	/< 170	PEE-LABSU-03	SM 2510 B	± 8%
3	Demanda Química de Oxigeno	mg/L	< 10,00	< 30	PEE-LABSU-89	HACH 8000	± 17%
4	Hidrocarburos totales	mg/L	0,06	< 0,5	PEE-LABSU-10	EPA 418.1	± 13%
5	Hidrocarburos aromáticos policíclicos	mg C/L	<-0,00016	< 0,0003	PEE-LABSU-15	EPA 8310, 3510 C, 3630 C	± 12%

Fuente: Reglamento Ambiental para las Óperaciones Hidrocarburiferas, Decreto 1215, febrero del 2001; Tabla # 4 b: Limites permisibles en el punto de control en el cuerpo receptor (inmisión).

2.1.- Comentario: El resultado de Hap's es la sumatoria de: Fluoranteno, Benzo (b) Fluoranteno, Benzo (k) Fluoranteno, Benzo (a) Pireno, Benzo (g,h,i) Pirileno e Indeno-Pireno.

3.- Responsables del Informe:

Gilberto Lopez Pérez Autorización

Téc. Andres Solis Plaza RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio.

Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE.

MC2201-05

Página 1 de 1

ABS-P-2018-030 23

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1040-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 19 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 15:10

 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/19

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-1040-18

CÓDIGO DE LA EMPRESA:

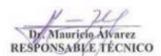
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,87	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	66,9	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1039-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 19 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 15:20

 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/19

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-1039-18

CÓDIGO DE LA EMPRESA:

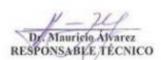
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,92	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	70,3	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1038-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 19 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 15:00

 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/19

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-1038-18

CÓDIGO DE LA EMPRESA:

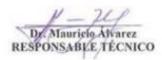
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,01	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	69,5	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1037-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 19 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 14:00

 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/19

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-1037-18

CÓDIGO DE LA EMPRESA:

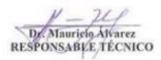
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,83	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	72,4	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

MONITOREO SUBTERRÁNEO ZECH

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1044-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 19 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 15:40

 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/19

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-1044-18

CÓDIGO DE LA EMPRESA:

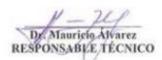
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,81	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	71,6	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2019-18

ST: 476–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 16 de mayo del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/05/07
 07:30

 FECHA DE MUESTREO:
 2018/05/06
 16:00

 FECHA DE ANÁLISIS:
 2018/05/07 - 2018/05/16

TIPO DE MUESTRA:

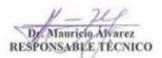
CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA:

Punto Inmisión

PUNTO DE MUESTREO: B-31 Pozo de Monitoreo Zech

ANÁLISIS SOLICITADO: Físico – Químico PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,63	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	70,2	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2038-18

ST: 487–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P./ BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 14 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/04
 07:30

 FECHA DE MUESTREO:
 2018/06/03
 17:30

 FECHA DE ANÁLISIS:
 2018/06/04 - 2018/06/14

TIPO DE MUESTRA:

CÓDIGO CESTTA:

LAB-AA-2038-18

CÓDIGO DE LA EMPRESA:

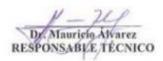
Punto Inmisión

PUNTO DE MUESTREO:

ANÁLISIS SOLICITADO:

PERSONA QUE TOMA LA MUESTRA:

Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,18	±0,2	6-8
Conductividad eléctrica	PEE/CESTTA/06 Standard Method No. 2510 B	μS/cm	68,7	±15%	<170
Hidrocarburos totales	PEE/CESTTA/07 TNRCC 1005	mg/L	<0,20	±26%	<0,5
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<30
Hidrocarburos Aromáticos Policíclicos	PEE/LABCESTTA/08 Standard Method No 6440-B	mg/L	< 0,00024	±24%	< 0,0003

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 4b de la RAOHE: Límites permisibles en el punto de control en el cuerpo receptor (inmisión). Solicitados a petición del cliente.

RESULTADOS AGUAS NEGRAS Y GRISES

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1706-18

382-18 ANÁLISIS DE AGUAS

PETROAMAZONAS E.P. / BLOQUE 31 **Nombre Peticionario:**

Pablo Ganchala Atn.

Av. República Oe1-162 y Teresa de Cepeda Dirección:

Quito- Pichincha

FECHA: 05 de Abril del 2018

NUMERO DE MUESTRAS:

FECHA Y HORA DE RECEPCIÓN EN LAB: 2018/04/02 07:30 FECHA DE MUESTREO: 2018/04/01 18:00 2018/04/02 - 2018/04/05 FECHA DE ANÁLISIS:

TIPO DE MUESTRA: Agua residual LAB-AA-1706-18 CÓDIGO CESTTA:

CÓDIGO DE LA EMPRESA: **ZECH**

PUNTO DE MUESTREO: Planta de Tratamiento de Aguas Residuales Campamento

Permanente

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,89	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados por el cliente.

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA -1036-18

ST: 426–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 13 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/09
 07:30

 FECHA DE MUESTREO:
 2018/04/08
 14:00

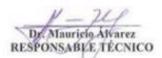
 FECHA DE ANÁLISIS:
 2018/04/09 - 2018/04/13

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB- AA -1036-18

CÓDIGO DE LA EMPRESA:PTARPUNTO DE MUESTREO:B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,67	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA -1952-18

ST: 431–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 20 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/16
 07:30

 FECHA DE MUESTREO:
 2018/04/15
 14:00

 FECHA DE ANÁLISIS:
 2018/04/16 - 2018/04/20

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB- AA -1952-18

CÓDIGO DE LA EMPRESA:PTARPUNTO DE MUESTREO:B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,80	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

INFORME DE ENSAYO No:

CENTRO DE SERVICIOS TÉCNICOS Y TRANSFERENCIA TECNOLÓGICA AMBIENTAL

DEPARTAMENTO: SERVICIOS DE LABORATORIO

LABORATORIO DE ENSAYOS

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

1 ciciax. (03) 3013163

ST: 440–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

AA -1966-18

FECHA: 27 de Abril del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/23
 07:30

 FECHA DE MUESTREO:
 2018/04/22
 14:20

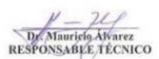
 FECHA DE ANÁLISIS:
 2018/04/23 - 2018/04/27

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB- AA -1966-18

CÓDIGO DE LA EMPRESA:PTARPUNTO DE MUESTREO:B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,02	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-1976-18

ST: 447–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 04 de Mayo del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/04/30
 07:30

 FECHA DE MUESTREO:
 2018/04/29
 14:30

 FECHA DE ANÁLISIS:
 2018/04/30 - 2018/05/04

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB-AA-1976-18

CÓDIGO DE LA EMPRESA:
PUNTO DE MUESTREO:
PTAR
B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,74	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

VICARIATO APOSTOLICO DE AGUARICO

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO No: 119 074

SPS: 18-1909

Análisis de agua

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 08 de mayo de 2018

PETROAMAZONAS EP.

Ing. Eddie Zambrano.

Dirección:

Bloque 31.

1.- Datos generales:

Recogidas por ... Ing. Eddie Zambrano. Fecha hora de toma de muestra ... 2 018 05 06 14:30. Fecha hora ingreso al Laboratorio2 018 05 06 18:00. .2 018 05 06 a 2 018 05 08. Fecha del análisis... Condiciones Ambientales de Análisis...T. Máx: 26,5°C T. Mín: 21,5°C

Código de LabSu.... Identificación de la muestra.

a 9 870.... Muestra de Agua Tratamiento. Código: ZECH

2.- Resultados / Parámetros y métodos / Referencias:

ftem	Análisis solicitados	Unidad	a 9 870	Tabla #5	PEE-LABSU	Método / Norma Referencia	Incertidumbre (K=2)
1	Potencial hidrógeno	~	5,23	15-9-	PEE-LABSU-02	SM 4500-H+ B	± 0,02
2	Demanda química de oxígeno	mg/L	16,12	< 80	PEE-LABSU-89	HACH 8000	± 17%
3	Cloro residual	mg/L	< 0,30	< 2,0	PEE-LABSU-07	SM 4500 Cl G	± 23%
4	Coliformes fecales	Col/100 mL	10	< 1 000	PEE-LABSU-43	SM 9222 D	± 20%

Fuente: Reglamento Ambiental para las Operaciones Hidrocarburiferas Decreto No.1215, febrero del 2001; Tabla # 5, límites permisibles para descargas de aguas negras y grises.

3.- Responsables del Informe:

Autorización: Ing. Gilberto López Pérez

DIRECTOR TECNICO

Téc. Andres Solis Plaza

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio.

Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE

MC2201-05

Página 1 de 1

VICARIATO APOSTOLICO DE AGUARICO

Fray P. de Villarquemado S/N y Av. Labaka E-mail: laboratorio@labsu.com Coca, Provincia de Orellana - Ecuador Telefax:(593) 6- 2881105

INFORME DE ENSAYO N°: 118 863

SPS: 18 - 1785

Análisis de agua

Acreditación Nº OAE LE 2C 07-003 LABORATORIO DE ENSAYOS

Coca, 16 de mayo de 2018

PETROAMAZONAS EP.

Atn.

Ing. Marjuri Jaramillo.

Dirección:

Bloque 31.

1.- Datos generales:

Sr. Darwin Barre 2 018 05 13 17:30. Fecha hora ingreso al Laboratorio 2 018 05 14 14:30. Fecha del análisis.. .2 018 05 14 a 2 018 05 16. Condiciones Ambientales de Análisis...T. Máx: 26,5°C T. Mín: 21,5°C

Código de LabSu..... Identificación de la muestra.

a 9 708..

Muestra de Agua ZECH. Código: TRATAMIENTO.

2.- Resultados / Parámetros y métodos / Referencias:

ftem	Análisis solicitados	Unidad	a 9 708	Tabla #5	PEE-LABSU	Método / Norma Referencia	Incertidumbre (K=2)
1	Potencial hidrógeno	~	5,35	5 9	PEE-LABSU-02	SM 4500-H+ B	± 0,02
2	Demanda química de oxígeno	mg/L	< 10,00	< 80	PEE-LABSU-89	HACH 8000	± 17%
3	Cloro residual	mg/L	< 0,30	< 2,0	PEE-LABSU-07	SM 4500 Cl G	± 23%
4	Coliformes fecales	Col/100 mL	40	< 1 000	PEE-LABSU-43	SM 9222 D	± 20%

Fuente: Reglamento Ambiental para las Opéraciones Hidrocarburiferas Decreto No.1215, febrero del 2001: Tabla # 5, límites permisibles para descargas de aguas negras y grises.

3.- Responsables del Informe:

Autorización:

Ing. Gilberto López Pérez.

Téc. Andres Solis Plaza RESPONSABLE CALIDAD

Notas: El informe sólo afecta a las muestras sometidas a ensayo.

Prohibida la reproducción total o parcial; por cualquier medio sin el permiso escrito del laboratorio. Los ensayos marcados con (*) no están incluidos en el alcance de la acreditación del SAE

MC2201-05

Página 1 de 1

INFORME DE ENSAYO No:

CENTRO DE SERVICIOS TÉCNICOS Y TRANSFERENCIA TECNOLÓGICA AMBIENTAL

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

465-18 ANÁLISIS DE AGUAS

PETROAMAZONAS E.P. / BLOQUE 31 Nombre Peticionario:

Pablo Ganchala Atn.

Av. República Oe1-162 y Teresa de Cepeda Dirección:

Quito- Pichincha

AA-2000-18

FECHA: 25 de Mayo del 2018

NUMERO DE MUESTRAS:

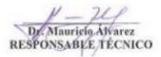
FECHA Y HORA DE RECEPCIÓN EN LAB: 2018/05/21 07:30 **FECHA DE MUESTREO:** 2018/05/20 14:40 2018/05/21 - 2018/05/25 FECHA DE ANÁLISIS:

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB-AA-2000-18

CÓDIGO DE LA EMPRESA: **PTAR PUNTO DE MUESTREO:** B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas


T máx.:25.0 °C. T min.: 15.0 °C CONDICIONES AMBIENTALES:

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,58	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2020-18

ST: 476–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 01 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/05/28
 07:30

 FECHA DE MUESTREO:
 2018/05/27
 14:40

 FECHA DE ANÁLISIS:
 2018/05/28 - 2018/06/01

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB- AA -2020-18

CÓDIGO DE LA EMPRESA:
PUNTO DE MUESTREO:
PTAR
B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	7,25	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA-2031-18

484-18 ANÁLISIS DE AGUAS

PETROAMAZONAS E.P. / BLOQUE 31 Nombre Peticionario:

Pablo Ganchala Atn.

Av. República Oe1-162 y Teresa de Cepeda Dirección:

Quito- Pichincha

FECHA: 08 de Junio del 2018

NUMERO DE MUESTRAS:

FECHA Y HORA DE RECEPCIÓN EN LAB: 2018/06/04 07:30 **FECHA DE MUESTREO:** 2018/06/03 15:50 2018/06/04 - 2018/06/08 FECHA DE ANÁLISIS:

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB- AA -2031-18

CÓDIGO DE LA EMPRESA: PTAR **PUNTO DE MUESTREO:** B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

T máx.:25.0 °C. T min.: 15.0 °C CONDICIONES AMBIENTALES:

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,87	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA -2045-18

ST: 493–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 15 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/11
 07:30

 FECHA DE MUESTREO:
 2018/06/10
 15:20

 FECHA DE ANÁLISIS:
 2018/06/11 - 2018/06/15

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB- AA -2045-18

CÓDIGO DE LA EMPRESA:PTARPUNTO DE MUESTREO:B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,94	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 1/2, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA -2058-18

500-18 ANÁLISIS DE AGUAS

PETROAMAZONAS E.P. / BLOQUE 31 Nombre Peticionario:

Pablo Ganchala Atn.

Av. República Oe1-162 y Teresa de Cepeda Dirección:

Quito- Pichincha

FECHA: 21 de Junio del 2018

NUMERO DE MUESTRAS:

FECHA Y HORA DE RECEPCIÓN EN LAB: 2018/06/18 07:30 **FECHA DE MUESTREO:** 2018/06/17 14:00 2018/06/18 - 2018/06/21 FECHA DE ANÁLISIS:

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB- AA -2058-18

CÓDIGO DE LA EMPRESA: PTAR **PUNTO DE MUESTREO:** B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas

T máx.:25.0 °C. T min.: 15.0 °C CONDICIONES AMBIENTALES:

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,53	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:

- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

DEPARTAMENTO: SERVICIOS DE LABORATORIO

Panamericana Sur Km. 1 ½, ESPOCH (Facultad de Ciencias) RIOBAMBA - ECUADOR Telefax: (03) 3013183

INFORME DE ENSAYO No: AA -2061-18

ST: 503–18 ANÁLISIS DE AGUAS

Nombre Peticionario: PETROAMAZONAS E.P. / BLOQUE 31

Atn. Pablo Ganchala

Dirección: Av. República Oe1-162 y Teresa de Cepeda

Quito- Pichincha

FECHA: 29 de Junio del 2018

NUMERO DE MUESTRAS:

 FECHA Y HORA DE RECEPCIÓN EN LAB:
 2018/06/25
 07:30

 FECHA DE MUESTREO:
 2018/06/24
 14:00

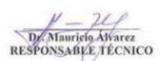
 FECHA DE ANÁLISIS:
 2018/06/25 - 2018/06/29

TIPO DE MUESTRA: Agua residual CÓDIGO CESTTA: LAB- AA -2061-18

CÓDIGO DE LA EMPRESA:PTARPUNTO DE MUESTREO:B-31 ZECH

ANÁLISIS SOLICITADO: Físico - Químico - Microbiológico

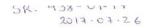
PERSONA QUE TOMA LA MUESTRA: Personal Petroamazonas


CONDICIONES AMBIENTALES: T máx.:25.0 °C. T min.: 15.0 °C

RESULTADOS ANALÍTICOS:

PARÁMETROS	MÉTODO /NORMA	UNIDAD	RESULTADO	INCERTIDUMBRE (k=2)	VALOR LÍMITE PERMISIBLE
Potencial Hidrógeno	PEE/CESTTA/05 Standard Method No. 4500-H ⁺ B	Unidades de pH	6,82	±0,2	5-9
Demanda Química de Oxigeno	PEE/CESTTA/09 Standard Methods No. 5220 D	mg/L	<30	±14%	<80
Coliformes Fecales	PEE/CESTTA/48 Standard Methods No. 9222 D y 92221	UFC/100 mL	<1	±20%	<1000
Cloro Libre Residual	PEE/CESTTA/12 Standard Methods No.4500-Cl G	mg/L	<0,1	±27%	<2,0

OBSERVACIONES:


- Muestra receptada en el laboratorio.
- La columna: Valor límite permisible, está fuera del alcance de la acreditación del SAE. Contempla los límites máximos permisibles indicados en la Tabla 5 de la RAOHE: Límites permisibles para descargas de aguas negras y grises. Solicitados a petición del cliente

ANEXO 2. CERTIFICADOS DE CALIBRACIÓN

Certified Reference Materials (CRM) Certificate of Analysis

Buffer Solution pH 4.00

Catalog Numbers: **ERA Lot Number:**

127, 129 010916

4.00 s.u. at 25°C

Certified Value: Expanded Uncertainty:

± 0.01 s.u. at 25 °C

Composition:

Potassium Hydrogen Phthalate & Hydrochloric Acid in deionized H₂O

Traceability:

NIST SRM 185i

Certificate Issue Date:

16th Sep 2016

Expiration Date:

31st March 2020

Analytical Verification: Analytical verification was performed using Ion Selective Electrode (ISE).

Description: One unit of pH Calibration/Verification Standard may consist of one U.S. pint (473 mL) or a 1000 milliliter solution (i.e., produced from purified 18 megohm delonized water and the starting material listed above after "Composition"). This material is covered under the scope of ERA's ISO Guide 34 Reference Material accreditation.

Intended Use: This CRM is intended for use in meeting pH calibration and verification requirements.

Traceability: The CRM certified value is directly traceable through an unbroken chain of comparison to the NIST SRM. The NIST SRM certified values were derived from a primary method of measurement.

Level of Homogeneity: Certified values and associated uncertainties applicable to volumes of 50 mL or greater.

Certified Values: The actual made-to concentration confirmed by ERA ISE analytical verification under ISO Guide 34 and ISO/IEC 17025.2,3

Expanded Uncertainty: The stated uncertainty is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal verification of the product by ERA, multiplied by a coverage factor (k=2.776) which is equal to the Student t factor at a 95% confidence interval at n-1 degrees of freedom. The uncertainty applies to the product as supplied 4,5

Stability: The certified value and stated uncertainty will be valid through the expiration date listed providing storage instructions have been followed.

Period of Validity: The certified values are monitored for the entire expiry period and purchasers will be notified of any significant changes resulting in recertification or withdrawal of the CRM during the period of validity of this certificate.

16341 Table Mtn. Pkwy.,

Golden, CO 80403 800-372-0122 fax: 303-421-0159 www.eragc.com

5R-437-01-18 2018-03-23 //-74

Certified Reference Materials (CRM)

Certificate of Analysis

Buffer Solution pH 7.00

Catalog Numbers: ERA Lot Number: 131, 133 060417

Certified Value: Expanded Uncertainty: 7.00 s.u. at 25 °C ± 0.01 s.u. at 25 °C

Composition:

Potassium phosphate monobasic & Sodium Hydroxide

In deionized H₂O

Traceability:

NIST SRM 186g 19 Jul 2017

Certificate Issue Date: Revision Date: Expiration Date:

Original 30 Apr 2020

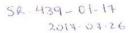
Analytical Verification: Analytical verification was performed using Ion Selective Electrode (ISE).

Description: One unit of pH Calibration/Verification Standard may consist of one U.S. pint (473 mL) or a 1000 milliliter solution (i.e., produced from purified 18 megohm deionized water and the starting material listed above after "Composition"). This material is covered under the scope of ERA's ISO Guide 34 Reference Material accreditation.

Intended Use: This CRM is intended for use in meeting pH calibration and verification requirements.

Traceability: The CRM certified value is directly traceable through an unbroken chain of comparison to the NIST SRM. The NIST SRM certified values were derived from a primary method of measurement. ¹

Level of Homogeneity: Certified values and associated uncertainties applicable to volumes of 50 mL or greater.


Certified Values: The actual made-to concentration confirmed by ERA ISE analytical verification under ISO Guide 34 and ISO/IEC 17025.^{2,3}

Expanded Uncertainty: The stated uncertainty is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal verification of the product by ERA, multiplied by a coverage factor (k=2.776) which is equal to the Student t factor at a 95% confidence interval at n-1 degrees of freedom. The uncertainty applies to the product as supplied.^{4,5}

Stability: The certified value and stated uncertainty will be valid through the expiration date listed providing storage instructions have been followed.

Period of Validity: The certified values are monitored for the entire expiry period and purchasers will be notified of any significant changes resulting in recertification or withdrawal of the CRM during the period of validity of this certificate.

16341 Table Mtn. Pkwy., Golden, CO 80403 800-372-0122 fax: 303-421-0159 www.eraqc.com

Certified Reference Materials (CRM)

Certificate of Analysis

Buffer Solution pH 10.00

Catalog Numbers:

135, 137

ERA Lot Number:

230916

Certified Value:

10.01 s.u. at 25 ℃

Expanded Uncertainty:

± 0.01 s.u. at 25°C

Composition:

Sodium Carbonate and Sodium Hydroxide in deionized H₂O

Traceability:

NIST SRM 187e

Certificate Issue Date:

29 Sep 2016

Expiration Date:

31 Mar 2020

Analytical Verification: Analytical verification was performed using Ion Selective Electrode (ISE).

Description: One pH Calibration/Verification Standard consists of one U.S. pint (473 mL) or a 1000 milliliter solution, produced from purified 18 megohm deionized water and the starting material listed above. This material is covered under the scope of ERA's ISO Guide 34 Reference Material accreditation.

Intended Use: This CRM is intended for use in meeting pH calibration and verification requirements.

Traceability: The CRM certified value is directly traceable through an unbroken chain of comparison to the NIST SRM. The NIST SRM certified values were derived from a primary method of measurement.

Level of Homogeneity: Certified values and associated uncertainties applicable to volumes of 50 mL or greater.

Certifled Values: The actual made-to concentration confirmed by ERA ISE analytical verification under ISO Guide 34

Expanded Uncertainty: The stated uncertainty is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal verification of the product by ERA, multiplied by a coverage factor (k=2.776) which is equal to the Student t factor at a 95% confidence interval at n-1 degrees of freedom. The uncertainty applies to the product as supplied.4,5

Stability: The certified value and stated uncertainty will be valid through the expiration date listed providing storage instructions have been followed.

Period of Validity: The certified values are monitored for the entire expiry period and purchasers will be notified of any significant changes resulting in recertification or withdrawal of the CRM during the period of validity of this

52.228-01-18

CERTIFICATE OF ANALYSIS

Complies with ISO Guide 34, ISO Guide 31, ISO Guide 35, and ISO 9001

TRACEABLE® CERTIFIED REFERENCE MATERIAL

This certificate indicates traceability to standards provided by (NIST) National Institute of Standards and Technology and/or a National Standards Laboratory.

Certificate No.:

4066-9114537

Description:

Conductivity Standard 98.7 uS/cm

09-328-2, 11754226

Lot: CC16784

Catalog Number: Certificate Date:

January 17, 2018

Expiration Date: January 17, 2019

Certified Value:

98.7 µS/cm

 $U = \pm 2.2 \,\mu\text{S/cm}$ (k=2) at 25°C

Derived Values:

98.7 micromho/cm, 10132 ohm-cm, 65.8 PPM D.S.

Certification measurements are performed under ISO Guide 34, A2LA accreditation no. 1750.02 and are traceable to recognized national and international standards via an unbroken chain of comparisons. Electrical conductance is the reciprocal of electrical impedance. The International System of units (SI), derived unit of conductance, is Siemens (S), also referred to as (mhos) the reciprocal of ohms. The certified value is expressed in microsiemens per centimeter (µS/cm).

MEASUREMENT: Ten (10) 100 ml samples were measured from this lot. The conductivity of each sample was derived from a measurement of the impedance of the solution using a conductivity meter and calibrated cell. The cell and sample were temperature controlled by submersion in a water bath at $25^{\circ}\text{C} \pm 0.015^{\circ}\text{C}$.

UNCERTAINTY: The certified value is given as the average of the measured samples. The reported expanded uncertainty (U) is determined from the measurement variation from sample to sample, change due to shelf life, and from the uncertainty of the measurement process. The value of uncertainty is multiplied by k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Uncertainty is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM).

METHOD: The certified reference material is prepared and analyzed by Control Company. The certified reference material consists of a mixture of a dilute solution of less than 0.01% (by mass) potassium chloride (KCL), of less than 2% (by mass) propanol, and of less than 99% (by mass) deionized water in equilibrium with atmospheric carbon dioxide. Mixing was performed by circulation utilizing a proprietary method.

Nam foli

Aaron Judice, Technical Manager

Nicol Rodriguez, Quality Manager

Traceability: Standards and Equipment Used

Description	Serial Number	Due Date	Traceable Reference
Conductivity Probe (4W)/Meter	12325-F04	5/17/18	TC30-8971206
Digital Thermometer	111879346	1/03/19	4000-9079329
Calibration Bath TC-337	B5C477		
Laboratory environment conditions: 24.0	0°C 34%RH 1.035mb/bPa		

CONTROL COMPANY 12554 Old Galveston RD Suite B230 Webster TX 77598 USA Tel: (281) 482 1714 Fax: (281) 482 9448 sales@control3.com www.control3.com

Control Company is an ISO Guide 34:2009 Certified Reference Material (CRM) Producer Accredited by American Association for Laboratory Accreditation (A2LA Certificate No. 1750.02). This certificate fulfills the requirements of ISO Guide 31:2000 (Reference Materials - Contents of Certificates and Labels), ISO Guide 34:2009 "Quality System Guidelines for the Production of Reference Materials", and ISO Guide 35:2006 "Certification of Reference Materials - General and Statistical Principals". Control Company is an ISO/IEC 17025:2005 Calibration Laboratory Accredited by American Association for Laboratory Accreditation (A2LA Certificate No. 1750.01). Control Company is ISO 9001:2008 certified by DNV GL (Certificate No. CERT-01805-2006-AQ-HOU-RVA). TRACEABLE® is a registered trademark of Control 3 Inc.

Page 1 of 3

Lot: CC16784

Copyright (c) 2016 Control Company

125 Market Street New Haven, CT 06513 USA

AccuStandard, Inc.

Tel (203)786-5290 Fax (203)786-5287 vw.AccuStandard.com

CERTIFICATE OF ANALYSIS

Catalog No: DRH-TX-003-20X Description: Gasoline/ Diesel Standard Lot: 214041095

Solvent: Pentane

Hazards: HIGHLY FLAMMABLE - Refer to SDS for safety info

Date Certified: Apr 14, 2014 Expiration: Apr 14, 2024 Sample Size: 1 mL Components: 2

Storage Condition: Ambient (>5 °C)

Included on ISO/IEC 17025 Scope of Accreditation: Yes Included on ISO Guide 34 Scope of Accreditation: Yes

Danger 2 Component CAS# Purity % Prepared Certified Analyte Concentration¹ (GC/FID) (mg/mL) (mg/mL) Gasoline - Regular, unleaded 8006-61-9 68334-30-5 Tech Mix 10.01 10.01 Tech Mix

A product with a suffix (-1A, -2B, etc. or -01, -02, etc.) on its lot number has had its expiration date extended and is identical to the same lot number without the suffix,

*All weights are traceable through NIST, Test No. 822-275872-11

*Certified Analyte Concentration = Purify x Prepared Concentration. The Uncertainty associated with the gravimetric values reported on this certificate is ±0.24%. The CRM Uncertainty calculated for this product is ±5%. These values are the expanded uncertainty and represent an estimated standard deviation equal to the positive square root of the total variation of the uncertainty of components. A normal distribution is assumed and a coverage factor of K=2 is chosen using approximately a 95% confidence level.

Labels and certificates follow U.S. Conventions in reporting numerical values:

A comma (,) is used to separate units of one-thousand or greater. A period (,) is used as a decimal place marker.

Page 1 of 1

For use in routine laboratory analysis.

3050 Spruce Street, Saint Louis, MO 63103, USA Website: www.sigmaaldrich.com
Email USA: techserv@sial.com

Outside USA: eurtechserv@sial.com

Product Name:

Certificate of Analysis

NaCl

Sodium chloride - BioXtra, ≥99.5% (AT)

Product Number:

S7653

Batch Number: Brand:

SLBM9415V

CAS Number:

SIAL

7647-14-5

MDL Number:

Test

MFCD00003477

Formula: Formula Weight:

58.44 g/mol

Quality Release Date:

Appearance (Color) Appearance (Form)

Solubility (Color) Solubility (Turbidity) 1M, H2O Insoluble Matter Passes filter test Phosphate (PO4) Sulfate (SO4) Aluminum (AI) Arsenic (As) < /= 0.0001% Barium (Ba) Bismuth (Bi) Bromide (Br) < /= 0.01% Calcium (Ca) Cadmium (Cd) Chromium (Cr)

06 MAY 2015

Recommended Retest Date:

MAY 2021

powder to fine crystals with lumps

Specification	Result
White	White
Pow der	Powder
Colorless	Colorless
Clear	Clear
Pass	Pass
≤ 0.0005 %	< 0.0005 %
< 0.05 %	< 0.00 %
< 0.0005 %	< 0.0005 %
Pass	Pass
≤ 0.0005 %	< 0.0005 %
< 0.0005 %	< 0.0005 %
Pass	Pass
< 0.002 %	0.001 %
< 0.0005 %	< 0.0005 %
< 0.0005 %	< 0.0005 %
< 0.0005 %	< 0.0005 %

< 0.0005 %

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

< 0.0005 %

Version Number: 1

Cobalt (Co)

Copper (Cu)

Page 1 of 2

125 Market Street New Haven, GT 06513 USA

-05-2017

AccuStandard* Inc.

Tel (203)786-52 Fax (203)786-52 w.AccuStandard.co

CERTIFICATE OF ANALYSIS

AccuTrace™ Reference Standard

Catalog No: ICP-67N-10X-1

Description: Vanadium ICP Standard

Element: Vanadium (V) SRM: 3165

Lot: 213045011-01 Matrix: 2-5% Nitric acid

Hazards: CORROSIVE - Refer to SDS for safety info

Date Certified: May 5, 2015 Expiration: May 5, 2020 Concentration: 10000 µg/ml. Density: 1.045 g/mL Sample Size: 100 mL Components: 1

Storage Condition: Ambient (>5 °C)

Included on ISO/IEC 17025 Scope of Accreditation: Yes Included on ISO Guide 34 Scope of Accreditation: Yes

			Ele	ments in µg/mt.			
An	nd<0.02	Ce nd<0.2	Gd nd<0.02	Lu nd<0.02	Pb nd<0.2	Sc nd<0.02	Ti nd<0.02
Al		Co nd<0.02	Ge nd<0.2	Mg nd<0.02	Pd nd<0.2	Se N/A	TI N/A
		Cr N/A	Hf nd<0.02	Mn_nd<0.02	Pr N/A	SI N/A	Tm nd<0.02
As		Cs N/A	Hg N/A	Mo_nd<0.02	Pt N/A	Sm N/A	U NA
Au		Cu nd<0.02	He nd<0.02	Na N/A	Rb N/A	\$n nd<0.02	v ·
Ba		Dy nd+0.02	tn nd40.2	Nb N/A	Re nd<0.2	Sr N/A	W NA
253	-	Er nd+0.02	tr nd=0.2	Nd nd=0.02	Rh nd<0.2	Ta nd<0.2	Y nd<0.02
Be		Eu nd<0.02	K nd<0.2	Ni nd<0.02	Ru nd<0.02	Th N/A	Yb nd<0.02
81			La nd<0.02	Os N/A	s NA	Te nd<0.2	Zn 0.07
Ca		Ga nd<0.02	L1 nd<0.02	P N/A	Sb NA	Th N/A	Zr N/A
Cd	THIN!	00 10-0.04	E				

This solution was assayed gravimetrically, using a balance calibrated against weight sets, ID #86270, treceable to NIST,

The gravimetric uncertainty for this product is ±0.24%. The CRM uncertainty is ±5%. See reverse side for datain.

In order to verify the concentration(s), the final solution was checked by plasma emission spectroscopy (ICP) against material traceable to the above field NIST SRM(s).

We use the highest purity raw materials available to minimize impurity levels in the final solution. Typically 99,999% pure starting materials are used as high purity acids and ASTM Type I 18 megohm delonized water.

All trace level elemental impurities were determined via plasma emission speciroscopy on the concentrate.

All glassware used in preparation is Class A and calibrated regularly.

All weights are traceable through NIST, Test No. 822-275872-11

All bottles are acid leephed and triple rinsed with delonized water prior to use.

Use good laboratory procedure when difuting this product. Shake bottle prior to use and do not pipetle directly out of the bottle. Use only cleaned Class A volumetric

We certify the accuracy of this standard to be ±0.5% of the stated value until its expiration date provided it is kept lightly capped and stored under the conditions stated

Page 1 of 1

For use in routine laboratory analysis.

125 Market Street New Haven, CT 06513 USA

AccuStandard® Inc.

Tel (203)786-5290 Fax (203)786-5287

CERTIFICATE OF ANALYSIS

AccuTrace™ Reference Standard

Catalog No: ICP-29N-10X-1 Description: Lead ICP Standard Element: Lead (Pb)

SRM: 3128 Lot: 213045020-01 Matrix: 2-5% Nitric acid

Hazards: CORROSIVE - Refer to SDS for safety info

Date Certified: Apr 14, 2015 Expiration: Apr 14, 2020 Concentration: 10000 µg/mL Density: 1.030 g/mL Sample Size: 100 mL Components: 1 Storage Condition: Ambient

Included on ISO/IEC 17025 Scope of Accreditation: Yes Included on ISO Guide 34 Scope of Accreditation: Yes

Elements in	µg/mL
-------------	-------

Ag	nd<0.02	Ce	nd<0.2	Gd	nd<0.02	Lu	nd<0.02	Pb	*	Sc	nd<0.02	Ti	nd<0.02
Al	nd<0.02	Co	nd<0.02	Ge	nd<0.2	Mg	nd<0.02	Pd	nd<0.2	Se	nd<0.2	TI	nd<0.2
As	nd<0.2	Cr	nd<0.02	Hf	nd<0.02	Mn	nd<0.02	Pr	nd<0.2	SI	N/A	Tm	nd<0.02
Au	nd<0.02	Cs	N/A	Hg	nd<0.2	Мо	nd<0.02	Pt	nd<0.2	Sm	nd<0.2	U	nd<0.2
В	nd<0.2	Cu	nd<0.02	Но	nd<0.02	Na	N/A	Rb	N/A	Sn	nd<0.02	V	nd<0.02
Ва	nd<0.02	Dy	nd<0.02	In	nd<0.2	Nb	nd<0.2	Re	nd<0.2	Sr	nd<0.02	w	nd<0.2
Be	nd<0.02	Er	nd<0.02	lr	nd<0.2	Nd	nd<0.02	Rh	nd<0.2	Та	nd<0.2	Y	nd<0.02
ВІ	nd<0.2	Eu	nd<0.02	к	nd<0.2	Ni.	nd<0.02	Ru	nd<0.02	Tb	nd<0.02	Yb	nd<0.02
Ca	0.14	Fe	nd<0.02	La	nd<0.02	Os	N/A	s	N/A	Te	nd<0.2	Zn	0.08
Cd	nd<0.02	Ga	nd<0.02	Li	nd<0.02	Р	N/A	Sb	nd<0.2	Th	nd<0.02	Zr	N/A

This solution was assayed titrimetrically, using EDTA which was standardized against NIST SRM #928 (lead nitrate.)

The gravimetric uncertainty for this product is ±0.24%. The CRM uncertainty is ±5%. See reverse side for details.

In order to verify the concentration(s), the final solution was checked by plasma emission spectroscopy (ICP) against material traceable to the above listed NIST

We use the highest purity raw materials available to minimize impurity tevels in the final solution. Typically 99.999%+ pure starting materials are used as well as high purity acids and ASTM Type I 18 megohm deionized water.

All trace level elemental impurities were determined via plasma emission spectroscopy on the concentrate.

All glassware used in preparation is Class A and calibrated regularly.

Balances used during preparation are calibrated regularly using NIST traceable weights.

All bottles are acid leached and triple rinsed with deionized water prior to use

Use good laboratory procedure when diluting this product. Shake bottle prior to use and do not pipette directly out of the bottle. Use only cleaned Class A volumetric glassware.

We certify the accuracy of this standard to be ±0.5% of the stated value until its expiration date provided it is kept tightly capped and stored under the conditions stated

Certified By: Lydia Snyder, Inorganic QC Manager

Page 1 of 1

For use in routine laboratory analysis.

125 Market Street New Haven, CT 06513

AccuStandard® Inc.

Tel (203)786-5290 Fax (203)786-5287 .AccuStandard.com

CERTIFICATE OF ANALYSIS

AccuTrace™ Reference Standard

Catalog No: ICP-08N-10X-1 Description: Cadmium ICP Standard

Element: Cadmium (Cd) SRM: 3108 Lot: 214115189 Matrix: 2-5% Nitric acid

Hazards: CORROSIVE - Refer to SDS for safety info

Date Certified: Dec 1, 2014 Expiration: Dec 1, 2019 Concentration: 10000 μg/mL Density: 1.030 g/mL Sample Size: 100 mL Components: 1 Storage Condition: Ambient (>5 °C)

Included on ISO/IEC 17025 Scope of Accreditation: Yes Included on ISO Guide 34 Scope of Accreditation: Yes

(E)
Danger 1

Elements in µg/mL

Al nd<0.02 Co nd<0.02 Ge nd<0.2 Mg nd<0.02 Pd nd<0.2 Se nd<0.2 Tl As nd<0.2 Gr nd<0.02 Hf nd<0.02 Mn nd<0.02 Pr nd<0.2 Sl nd<0.2 Tm nd Au nd<0.02 Gs N/A Hg nd<0.2 Mo nd<0.02 Pt nd<0.2 Sm nd<0.2 U B nd<0.2 Cu nd<0.02 Ho nd<0.02 Na nd<0.02 Rb N/A Sn nd<0.02 V Ba nd<0.02 Dy nd<0.02 In nd<0.2 Nb nd<0.2 Re N/A Sr nd<0.02 W Be nd<0.02 Er nd<0.02 Ir nd<0.2 Nd nd<0.02 Rh nd<0.2 Ta nd<0.2 Y Bl nd<0.2 Eu nd<0.02 K nd<0.2 Ni nd<0.02 Ru nd<0.02 Tb nd<0.2 Y Bl nd<0.2 Eu nd<0.02 K nd<0.2 Ni nd<0.02 Ru nd<0.02 Tb nd<0.02 Yb Ca 0.03 Fe 0.06 La nd<0.02 Os N/A S N/A Te N/A Zn nd Al nd<0.05 N/A S N/A Te N/A Zn nd Al nd<0.07 N/A S N/A Te N/A Zn nd Al nd<0.08 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A Te N/A Zn nd Al nd<0.09 N/A S N/A T															
As nd<0.2	Ag	nd<0.02	Ce	nd<0.2	Gd	nd<0.02		Lu	nd<0.02	Pb	nd<0.2	Sc	nd<0.02	Ti	nd<0.02
Au nd<0.02 Cs N/A Hg nd<0.2 Mo nd<0.02 Pt nd<0.2 Sm nd<0.2 U B nd<0.2	ΑI	nd<0.02	Co	nd<0.02	Ge	nd<0.2		Mg	nd<0.02	Pd	nd<0.2	Se	nd<0.2	TI	nd<0.2
B nd<0.2 Cu nd<0.02 Ho nd<0.02 Na nd<0.02 Rb N/A Sn nd<0.02 V Rb nd<0.02 Sr nd<0.02 Sr nd<0.02 Ma nd<0.02 Rb N/A Sr nd<0.02 Ma nd<0.02 Ma nd<0.02 Rb N/A Sr nd<0.02 Ma nd<0.02 Ma nd<0.02 Rb nd<0.02 Ma nd<0.02 Rb nd<0.02 Ta nd<0.02 Y Rb nd<0.02 Rb nd<0.02 Ta nd<0.02 Y Rb nd<0.02 Rb nd<0.02 Tb	As	nd<0.2	Cr	nd<0.02	Hf	nd<0.02		Mn	nd<0.02	Pr	nd<0.2	SI	nd<0.2	Tm	nd<0.02
Ba nd<0.02 Dy nd<0.02 In nd<0.2 Nb nd<0.2 Re N/A Sr nd<0.02 W Be nd<0.02	Au	nd<0.02	Cs	N/A	Hg	nd<0.2		Мо	nd<0.02	Pt	nd<0.2	Sm	nd<0.2	u	nd<0.2
Be nd<0.02 Er nd<0.02 Ir nd<0.2 Nd nd<0.02 Rh nd<0.2 Ta nd<0.2 Y nd<0.2 Bi nd<0.2	В	nd<0.2	Cu	nd<0.02	Но	nd<0.02		Na	nd<0.02	Rb	N/A	Sn	nd<0.02	٧	nd<0.02
Bi nd<0.2 Eu nd<0.02 K nd<0.2 Ni nd<0.02 Ru nd<0.02 Tb nd<0.02 Yb nd<0.03 Fe 0.06 La nd<0.02 Os N/A S N/A Te N/A Zn nd<0.03 N/A S N/A Te N/A Zn nd<0.03 N/A S N/A Te N/A Zn nd<0.03 N/A S N/A N/A N/A Zn nd<0.03 N/A	Ва	nd<0.02	Dy	nd<0.02	In	nd<0.2		Nb	nd<0.2	Re	N/A	Sr	nd<0.02	w	N/A
Ca 0.03 Fe 0.06 La nd<0.02 Os N/A S N/A Te N/A Zn	Be	nd<0.02	Er	nd<0.02	ir	nd<0.2		Nd	nd<0.02	Rh	nd<0.2	Та	nd<0.2	Υ	nd<0.02
	ві	nd<0.2	Eu	nd<0.02	к	nd<0.2		Ni	nd<0.02	Ru	nd<0.02	Tb	nd<0.02	Yb	nd<0.02
Cd * Ga nd<0.02 Li nd<0.02 P N/A Sb nd<0.2 Th nd<0.02 Zr	Ca	0.03	Fe	0.06	La	nd<0.02	i Yang	Os	N/A	s	N/A	Te	N/A	Zn	nd<0.02
	Cd		Ga	nd<0.02	Li	nd<0.02		P	N/A	Sb	nd<0.2	Th	nd<0.02	Zr	nd<0.02

The gravimetric uncertainty for this product is ±0.24%. The CRM uncertainty is ±5%. See reverse side for details.

In order to verify the concentration(s), the final solution was checked by plasma emission spectroscopy (ICP) against material traceable to the above listed NIST SRM(s).

We use the highest purity raw materials available to minimize impurity levels in the final solution. Typically 99.999%+ pure starting materials are used as well as high purity acids and ASTM Type I 18 megohm deionized water.

All trace level elemental impurities were determined via plasma emission spectroscopy on the concentrate.

All glassware used in preparation is Class A and calibrated regularly.

Balances used during preparation are calibrated regularly using NIST traceable weights. All bottles are acid leached and triple rinsed with delonized water prior to use.

Use good laboratory procedure when diluting this product. Shake bottle prior to use and do not pipette directly out of the bottle. Use only cleaned Class A volumetric glassware.

We certify the accuracy of this standard to be ±0.5% of the stated value until its expiration date provided it is kept tightly capped and stored under the conditions stated above

Certified By: Lydia Snyder, Inorganic OC Manager

Page 1 of 1

For use in routine laboratory analysis.

ANEXO 3. CADENAS DE CUSTODIA

PETROAMAZONAS E

CADENA DE CUSTODIA

	PETROAMA MUESTREADOR:	ZONAS EF)	-			,	,						
	MOESTREADOR.		VA		Campo: BLOQUE APAIKA NENKE B31	_\(\phi\)	/ /2 /2	/ /				/ /	Número de Envases	Comentarios (tipo de muestra)
	Muestra #	Fecha (dia/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla 4 a	Tabla 4 B	Tabla 5	Tabla 7	Tabla 7 B	Inen 1708	/	Ř	(upo de muestra)
1705	/_1	01 Apr 18	16H00	APAIKA	PLANTA DE TRATAMIENTO AGUA RESIDUALES CAMPAMENTO OPERACIONES			х					3	LIQUIDO
1706	2	01 Apr 18	18H00	ZECH	PLANTA DE TRATAMIENTO AGUA RESIDUALES CAMPAMENTO PERMANENTE			х					3	LIQUIDO
1707	/ 3	01 Apr 18	16H10	APAIKA	PLANTA DE TRATAMIENTO AGUA DE COMSUMO CAMPAMENTO OPERACIONES						х		3	LIQUIDO
1708	4	01 Apr 18	18H10	ZECH	PLANTA DE TRATAMIENTO AGUA DE COMSUMO CAMPAMENTO PERMANENTE						х		3	LIQUIDO
1709	5	01 Apr 18	16H15	APAIKA	TRAMPA API#1	х							2	LIQUIDO
1710	6	01 Apr 18	16H20	APAIKA	TRAMPA API #2	X .							2	LIQUIDO
1711	7	01 Apr 18	16H25	APAIKA	TRAMPA API #3	x							2	LIQUIDO
1712	/ 8	01 Apr 18	16H30	APAIKA	TRAMPA API #4	х							2	LIQUIDO
1713	9	01 Apr 18	17H00	NENKE	TRAMPA API #1	x,							2	LIQUIDO
1714	/ 10	01 Apr 18	17H30	ECB	TRAMPA API #1	х	/						2	LIQUIDO
1715	11	01 Apr 18	18H15	ZECH	TRAMPA API #1	х							2	LIQUIDO
	Enviado por: (Nomb EDDIE ZAMBRANO	// //	Fecha: 4/2/2018	Hora: 6:00	Recibido por: (Nombre-Firma)						Fecha		Hora	Recibido por: (Nombre-Firma)
	Verifica toma: (No	mbre - Firma)				Comen	tairine:							
Enviado por: (Nombre-Firma) Fecha Hora Recibido en Laboratorio por: (Firma y sello) C. Hartifich 2018 - 04 - 02														

CADENA DE CUSTODIA

MUESTREADO	OR: (Nombre-Firma) : Leonardo Ash	anga	BLEQUE - 31 Apriles	4a (efluentes)	Tabla 4b (Inmisión)	5 (negras&grises	6 (Bioremediacid	7a (lodos sin imp	7b (lodos con im	6	NEN 1108	CRETIB	o de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla ,	Tabla ,	Tabla (Tabla (Tabla	Tabla 7	Tabla (Tabla INEN	Analisi (Número	
1	08 Apr 18	17H00	ZECH	Planta de tratamiento de aguas grises y negras campamento permanente			х				181			3	LIQUIDA
2	08 Apr 18	14H00	N/A	Rio Tiputini		х								2	LIQUIDA
3	08 Apr 18	16H20	N/A	Río Huiririma		х								2	LIQUIDA
4	08 Apr 18	15H30	N/A	Rio Bejuco		х								2	LIQUIDA
5	08 Apr 18	15H00	N/A	Río Pinduyacu		х								2	LIQUIDA
6	08 Apr 18	14H45	N/A	Río s/n Nenke		х								2	LIQUIDA
7	08 Apr 18	14H00	N/A	Punto Inmisión Apaika		х								2	LIQUIDA
8	08 Apr 18	14H30	N/A	Punto Inmisión Nenke		х								2	LIQUIDA
9	08 Apr 18	15H45	N/A	Punto Inmisión ECB		х								2	LIQUIDA
10	08 Apr 18	14H00	N/A	Punto Inmisión Zech		х								2	LIQUIDA
11	08 Apr 18	17H20	N/A	Pozo de Monitoreo ZECH		х								2	LIQUIDA
Enviado por: (ñ eonardo Asha	Nombre-Firma) : nga	Fecha 09/04/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Envia	do por	(Nom	bre-Fi	ma)	Fecha				Hora	Recibido por: (Nombre-Firma)
enviado por: (N Eoo:∈ Zing	Nombre-Firmay	Fecha	Hora	Recibido en Laboratorio por: (Firma y sello)	Come	ntarios	s:								=

CADENA DE CUSTODIA

MUESTREADOR	: (Nombre-Firma) ;	Leonardo Ashar	nga	Sloque-31 Apaika	Tabla 4a (efluentes)	Tabla 4b (Inmisión)	Tabla 5 (negras&grises	Tabla 6 (Bioremediació	Tabla 7a (lodos sin im	Tabla 7b (lodos con im	6	Tabla INEN 1108	Analisi CRETIB	ro de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Analis	Número	>
1	15 Apr 18	17H10	ZECH	Planta de tratamiento de aguas grises y negras campament permanente	0		х							3	LIQUIDA
		-													
Enviado por: (No Leonardo Ashang		Fecha 16/04/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Envia	do por	: (Nom	bre-Fir	rma)	Fecha				Hora	Recibido por: (Nombre-Firma)
Enviado por: (No	mbre-Firma	recha	Hora	Recibido en Laboratorio por: (Firma y sello)	Come	entarios	S.								I,

MUESTREADOR	R: (Nombre-Firma):	Leonardo Ashai	nga	Locación:	_	_	d)	<u></u>	T #	E			_	10	1
71				3 coare - 31 Sparke	Tabla 4a (efluentes)	Tabla 4b (Inmisión)	Tabla 5 (negras&grise	Tabla 6 (Bioremediaci	Tabla 7a (lodos sin im	Tabla 7b (lodos con in	6	Tabla INEN 1108	Analisi CRETIB	ro de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Analis	Número	
1	22 Apr 18	17H00	ZECH	Planta de tratamiento de aguas grises y negras campament permanente	0		х							3	LIQUIDA
															-
	-														
Enviado por: (No Leonardo Ashang	ja .	Fecha 23/04/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Envia	do por	: (Nom	bre-Fir	ma)	Fecha				Hora	Recibido por: (Nombre-Firma)
Enviado por: (No	mbre-Firma	Fecha	Hora	Recibido en Laboratorio por: (Firma y sello)	Comentarios:										

MUESTREADO	R: (Nombre-Firma	Leonardo As	shanga	Locación:			Ses	Ció	Ë	, <u>E</u>		T	- 9	50	
	\$	5		BLOQUE-31 Apaik	p 4a (effuentes)	Tabla 4b (Inmisión)	5 (negras&grise	6 (Bioremediaci	Tabla 7a (lodos sin im	Tabla 7b (lodos con im		Tabla INEN 1108	CRETIB	de Envases	Comentarios (tipo de muest
Muestra #	Fecha (dia/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla 4	Tabla 4	Tabla 5	Tabla 6	Tabla 7	Tabla 78	Tabla 9	Fabla IN	Analisi CRETIB	Número	
1	29 Apr 18	17H00	ZECH	Planta de tratamiento de aguas grises y negras campamento permanente			x							3	LIQUIDA
2		1										and the Control of th			Licensy
3														1	
4															
5					1										
6						UK BOKE									
7															
8						10.01									
		200			and trans										
	4	TANK TO MADE A SADA													
iado por: (No nardo Ashang		Fecha 30/04/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Enviad	o por: (Nomb	re-Firm	na) F	echa			He	ora	Recibido por: (Nombre-Firma)
ado por: (Nor	nbre-Firma)	Pécha	Hora	Recibido en Laboratorio por: (Firma y sello)	y sello) Comentarios:										

MUESTREAD	OR: (Nombre-Firma	i) : Leonardo Ash	nanga	Beoque-31 Speciko	Tabla 4a (efluentes)	Tabla 4b (Inmisión)	Tabla 5 (negras&grises	Tabla 6 (Bioremediació	Tabla 7a (lodos sin imp	7b (lodos con im		Tabla INEN 1108	Analisi CRETIB	o de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha / (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla 4	Tabla 4	Tabla (Tabla (Tabla	Tabla 7	Tabla 9	Tabla I	Analisi	Número	
1	06 May 18	14H30	ZECH	Planta de tratamiento de aguas residuales del campamento permanente			х							3	LIQUIDA
2	06 May 18	14H50	N/A	Punto de Inmisión Apaika		х								2	LIQUIDA
3	06 May 18	15H00	N/A	Punto de Inmisión Nenke		х								2	LIQUIDA
4	06 May 18	15H30	N/A	Punto de Inmisión ECB		х								2	LIQUIDA
5	06 May 18	15H50	N/A	Punto de Inmisión ZECH		х								2	LIQUIDA
6	06 May 18	16H00	ZECH	Pozo de monitoreo ZECH		х								2	LIQUIDA
				ji.											
Leonardo Asha	anga	Fecha 07/05/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Envia	do por	(Nom	l bre-Fir	rma)	Fecha				Hora	Recibido por: (Nombre-Firma)
Enviado por: (Nombre-Firmal	Fecha	Hora	Recibido en Laboratorio por: (Firma y sello)	ello) Comentarios:										

MUESTREAD	OOR: (Nombre-Firm	a) : Leonardo As	shanga	BLOQUE-31 April	Tabla 4a (efluentes)	Tabla 4b (Inmisión)	Tabla 5 (negras&grises	Tabla 6 (Bioremediació	Tabla 7a (lodos sin imp	Tabla 7b (lodos con im		Tabla INEN 1108	Analisi CRETIB	o de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla 4	Tabla 4	Tabla !	Tabla (Tabla 7	Tabla 7	Tabla 9	Tabla	Analisi	Número	
1	13 May 18	17H30	ZECH	Planta de tratamiento de aguas residuales del campamento permanente			х							2	LIQUIDA
Enviado por: (Leonardo Asha	(Nombre-Firma) : anga	Fecha 14/05/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Envia	do por	L : (Nom	bre-Fir	ma)	Fecha				Hora	Recibido por: (Nombre-Firma)
Enviado por:	Nombre-Firma	Pecha	Hora	Recibido en Laboratorio por: (Firma y sello)	ello) Comentarios:										

MUESTREAD	OOR: (Nombre-Firm	a) : Leonardo As	hanga	BCQUE-31 Aprika	Tabla 4a (efluentes)	Tabla 4b (Inmisión)	Tabla 5 (negras&grises	Tabla 6 (Bioremediacio	Tabla 7a (lodos sin imp	Tabla 7b (lodos con im	6	Tabla INEN 1108	Analisi CRETIB	ro de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla 9	Tabla	Analis	Número	
1	20 May 18	15H30	ZECH	Planta de tratamiento de aguas residuales del campamento permanente			х							2	ŁIQUIDA
1															
Leonardo Ash		Fecha 21/05/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Envia	do por	(Nom	bre-Fir	ma)	Fecha				Hora	Recibido por: (Nombre-Firma)
Enviado por: ((Nombre-Firmar)	Fe cha	Hora	Recibido en Laboratorio por: (Firma y sello)	ello) Comentarios:										

	DOR: (Nombre-Firn		shanga	BLOQUE-31 Spaike	4a (efluentes)	Tabla 4b (Inmisión)	5 (negras&grises	Tabla 6 (Bioremediació	Tabla 7a (lodos sin imp	Tabla 7b (lodos con im	6	Tabla INEN 1108	Analisi CRETIB	ro de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha/ (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla 9	Tabla	Analis	Número	
1	27 May 18	15H10	APAIKA	TRAMPA API 1	х									2	LIQUIDA
2	27 May 18	15H15	APAIKA	TRAMPA API 2	х									2	LIQUIDA
3	27 May 18	15H20	APAIKA	TRAMPA API 3	х									2	LIQUIDA
4	27 May 18	15H25	APAIKA	TRAMPA API 4	х									2	LIQUIDA
5	27 May 18	16H00	NENKE	TRAMPA API NENKE	х									2	LIQUIDA
6	27 May 18	16H40	ECB	TRAMPA API ECB	х									2	LIQUIDA
7	27 May 18	17H40	ZECH	TRAMPA API ZECH	х									2	LIQUIDA
8	27 May 18	17H50	ZECH	Planta de tratamiento de aguas de consumo campamento permanente								х		2	LIQUIDA
9	27 May 18	15H05	ZECH	Planta de tratamiento de aguas de consumo campamento operaciones								х		2	LIQUIDA
10	27 May 18	18H00	APAIKA	Planta de tratamiento de aguas grises y negras campamento operaciones			х							2	LIQUIDA
Leonardo As	hanga	Fecha 28/05/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Enviado por: (Nombre-Firma) Fecha Hora Recibido por: (Nombre-Firma)				Recibido por: (Nombre-Firma)						
Enviado por:	(Nombre-Firmay)	Fecha	Hora	Recibido en Laboratorio por: (Firma y sello)	Come	ntario	s:								

MUESTREAI	DOR: (Nombre-Firm	na) : Leonardo A	shanga	BLOQUE-31 Aprilo	Tabla 4a (efluentes)	Tabla 4b (Inmisión)	5 (negras&grises	Tabla 6 (Bioremediació	Tabla 7a (lodos sin imp	Tabla 7b (lodos con im		Tabla INEN 1108	Analisi CRETIB	o de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla 4	Tabla 4	Tabla (Tabla (Tabla 7	Tabla 7	Tabla 9	Tabla	Analisi	Número	
1	03 Jun 18	17H50	ZECH	Planta de tratamiento de aguas residuales del campamento permanente			х							3	LIQUIDA
2	03 Jun 18	15H20	N/A	Punto de Inmisión Apaika		х								2	LIQUIDA
3	03 Jun 18	15H50	N/A	Punto de Inmisión Nenke		х						-		2	LIQUIDA
4	03 Jun 18	16H30	N/A	Punto de Inmisión ECB		х								2	LIQUIDA
5	03 Jun 18	18H00	N/A	Punto de Inmisión ZECH		х								2	LIQUIDA
6	03 Jun 18	17H30	ZECH	Pozo de monitoreo ZECH		х								2	LIQUIDA
Enviado por: Leonardo Ash		Fecha 04/06/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Enviado por: (Nombre-Firma) Fecha Hora Recibido por: (Nombre-Firma)				Recibido por: (Nombre-Firma)						
Enviado por: Eoのに ど	(Nombre-Firma)	Fecha	Hora	Recibido en Laboratorio por: (Firma y sello)	Comentarios:										

MUESTREA	DOR: (Nombre-Firm	na): Leonardo As	shanga	BLOQUE-31 Aprila	Tabia 4a (efluentes)	Tabla 4b (Inmisión)	Tabla 5 (negras&grises	Tabla 6 (Bioremediació	Tabla 7a (lodos sin imp	Tabla 7b (lodos con im	œ.	Tabla INEN 1108	Analisi CRETIB	ro de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla,	Tabla ,	Tabla	Tabla	Tabla	Tabla	Tabla 9	Tabla	Analis	Número	
1	10 Jun 18	15H10	ZECH	Planta de tratamiento de aguas residuales del campamento permanente			х							3	LIQUIDA
2	10 Jun 18	17H30	ZECH	Planta de tratamiento de aguas de consumo campamento permanente								х		2	
3	10 Jun 18	17H00	ZECH	Planta de tratamiento de aguas de consumo campamento operaciones								х		2	
Enviado por: Leonardo Asl		Fecha 11/06/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Envia	do por	: (Nom	bre-Fi	ma)	Fecha				Hora	Recibido por: (Nombre-Firma)
Enviado por: Logi∈ Z	(Nombre-Firma)	Edena	Hora	Recibido en Laboratorio por: (Firma y sello)	Comentarios:										

MUESTREA	DOR: (Nombre-Fire	ha) : Leonardo A	shanga	SLOWE-31 Apriles	Tabla 4a (efluentes)	Tabla 4b (înmisión)	Tabla 5 (negras&grises	Tabla 6 (Bioremediació	Tabla 7a (lodos sin imp	Tabla 7b (lodos con im	6	Tabla INEN 1108	Analisi CRETIB	ro de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla	Tabla,	Tabla	Tabla (Tabla	Tabla	Tabla 9	Tabla	Analis	Número	
1	17 Jun 18	15H30	ZECH	Planta de tratamiento de aguas residuales del campamento permanente			х							3	LIQUIDA
				92											
Enviado por: Leonardo Ash		Fecha 18/06/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Envia	do por:	(Nom	bre-Fir	ma)	Fecha				Hora	Recibido por: (Nombre-Firma)
Enviado por:	(Nombre-Firmar)	Fecha	Hora	Recibido en Laboratorio por: (Firma y sello)	Come	ntarios	s:								I

	DOR: (Nombre-Firm		shanga	BLOQUE-31 Apreika	4a (efluentes)	Tabla 4b (Inmisión)	5 (negras&grises	Fabla 6 (Bioremediació	Tabla 7a (lodos sin imp	Tabla 7b (lodos con im	6	Tabla INEN 1108	Analisi CRETIB	ro de Envases	Comentarios (tipo de muestra)
Muestra #	Fecha (día/mes/año)	Hora	Plataforma (Nombre)	Ubicación (código/coordenadas/descripción sitio)	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla	Tabla 9	Tabla I	Analis	Número	
1	24 Jun 18	16H10	ZECH	Planta de tratamiento de aguas residuales del campamento permanente			х							3	LIQUIDA
2	24 Jun 18	14H00	APAIKA	TRAMPA API 1	х									2	LIQUIDA
3	24 Jun 18	14G15	APAIKA	TRAMPA API 2	х									2	LIQUIDA
4	24 Jun 18	14H30	APAIKA	TRAMPA API 3	х									2	LIQUIDA
5	24 Jun 18	14H45	APAIKA	TRAMPA API 4	х									2	LIQUIDA
6	24 Jun 18	15H30	NENKE	TRAMPA API NENKE	х									2	LIQUIDA
7	24 Jun 18	17H00	ECB	TRAMPA API ECB	х									2	LIQUIDA
8	24 Jun 18	17H45	ZECH	TRAMPA API ZECH	х									2	LIQUIDA
								-							
Enviado por: Leonardo Ash		Fecha 18/06/2018	Hora: 06H00	Recibido por: (Nombre-Firma)	Enviado por: (Nombre-Firma) Fecha Hora Recibido por: (Nombre-Firma)				Recibido por: (Nombre-Firma)						
Enviado por:	(Nombre-Firma)	Hecha C	Hora	Recibido en Laboratorio por: (Firma y sello)	Comentarios:										

CENTRO DE SERVICIOS TÉCNICOS Y TRANSFERENCIA TECNOLÓGICA AMBIENTAL CESTTA

ANEXO 4. ALCANCE DE ACREDITACIÓN

CERTIFICADO DE ACREDITACIÓN

Laboratorio de Análisis Ambiental e Inspección CESTTA

Riobamba - Ecuador

Acreditación Nº OAE LE 2C 06-008 LABORATORIO DE ENSAYOS Se encuentra acreditado por el Servicio de Acreditación Ecuatoriano en cumplimiento con los requisitos establecidos en la Norma NTE INEN-ISO/IEC 17025:2006 "Requisitos generales para la competencia de los laboratorios de ensayo y de calibración", equivalente a la Norma ISO/IEC 17025:2005, y con los criterios y procedimientos de acreditación del SAE.

Esta acreditación demuestra la competencia técnica para la ejecución de los ensayos detallados en el ALCANCE DE ACREDITACIÓN*, que se realizan en las localizaciones identificadas en el mismo.

Acreditación inicial:

2006-11-24

Renovación 2:

2015-01-05

Expira:

2020-01-04

La acreditación está condicionada al cumplimiento continuo por parte del laboratorio con los requisitos de acreditación, por lo que la vigencia del presente certificado de acreditación debe ser consultada en la página web del SAE, www.acreditacion.gob.ec

* El presente certificado solo tiene validez con su correspondiente ALCANCE DE ACREDITACIÓN.

Ley del Sistema Ecuatoriano de la Calidad, Art. 21.

SERVICIO DE ACREDITACIÓN ECUATORIANO - SAE

ALCANCE DE ACREDITACIÓN

Laboratorio del Centro de Servicios Técnicos y Transferencia Tecnológica Ambiental CESTTA- ESPOCH

Panamericana Sur Km 1,5,
• Teléfono: 03 296 8912 • E-mail: roberto.erazo@cestta.com.ec
Riobamba - Ecuador

Certificado de Acreditación Nº: OAE LE 2C 06-008

Actualización Nº: 15

Resolución Nº: SAE-ACR-0261-2017

Vigencia a partir de: 2017-12-21 Acreditación Inicial: 2006-11-24

Responsable(s) Técnico(s): Ing. Verónica Mercedes Bravo Basantes

Ing. Kléber Rolando Isa Franco Dr. Miguel Mauricio Álvarez Marchán

Sector

Ensayos

Está acreditado por el Servicio de Acreditación Ecuatoriano (SAE) de acuerdo con los requerimientos establecidos en la Norma NTE INEN ISO/IEC 17025:2006 "Requisitos generales para la competencia de los laboratorios de ensayo y de calibración", los Criterios Generales de Acreditación para laboratorios de ensayo y calibración (CR GA01), Guías y Políticas del SAE en su edición vigente, para las siguientes actividades:

CATEGORIA: 0. Ensayos en el laboratorio permanente

CAMPO DE ENSAYO: Análisis Físico – químicos en aguas

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	pH, Electrometría, (4,0 a 12,45) unidades de pH	PEE/CESTTA/05 Método de referencia: Standard Methods Ed22, 2012 4500-H+B
Aguas naturales Aguas residuales	Conductividad eléctrica, Electrometría, (10 a 10000) uS/cm	PEE/CESTTA/06 Método de referencia: Standard Methods Ed21, 2005 2510B
	Demanda Química de Oxigeno(DQO),reflujo cerrado, Espectrofotometría UV-Vis, (30 a 10300) mg/l	PEE/CESTTA/09 Método de referencia: Standard Methods Ed. 22, 2012 5220D

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Demanda Bioquímica de Oxigeno(DBO5) Electrometría, (2,0 a 5000) mg/l	PEE/CESTTA/46 Método de referencia: Standard Methods Ed 21, 2005 5210B
	Sólidos Totales, Gravimetría, (100 a 20000) mg/l	PEE/CESTTA/10 Método de referencia: Standard Methods Ed 21, 2005 2540B

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Sólidos Totales Disueltos, Gravimetría, (50 a 5500) mg/l	PEE/CESTTA/11 Método de referencia: Standard Methods Ed 21, 2005 2540C.
	Sólidos Totales Suspendidos, Gravimetría, (50 a 5500) mg/l	PEE/CESTTA/13 Método de referencia: Standard Methods Ed21, 2005 2540D
	Cloruros, Volumetría,	
	(10 a 8000) mg/l	PEE/CESTTA/15 Método de referencia Standard Methods Ed.21, 2005 4500CI-C
Aguas naturales Aguas residuales	Cloro libre y Cloro residual, Espectrofotometría UV-VIS, (0,10 a 4,00) mg/l	PEE/CESTTA/12 Método de referencia Standard Methods Ed.21, 2005 4500Cl-G
	Sulfatos, Espectrofotometría UV- Vis, (8 a 200) mg/l	PEE/CESTTA/18
	(6 a 200) High	Método de referencia Standard Methods Ed.21, 2005 4500E _{SO4}
	Nitrógeno Amoniacal(NH₃+)o(NH₄+), Espectrofotometría UV-Vis,	PEE/CESTTA/20 Método de referencia EPA Water Waste Nº350.2, 1974
	(0,1 a 2,5) mg/l	

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Dureza Total expresada como CaCO ₃ ,Volumetría,	PEE/CESTTA/40 Método de referencia Standard Methods Ed.21, 2005
	(10 a 1000) mg/l	2340C
	Surfactantes Aniónicos (tensoactivos), Espectrofotometría UV-Vis,	PEE/CESTTA/44 Método de referencia Standard Methods Ed.21, 2005
	(0,05 a 44) mg/l	5540C

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Aguas naturales Aguas residuales Agua de consumo Lixiviados	Hidrocarburos aromáticos policíclicos (HAPs),Cromatografía líquida de alta eficiencia HPLC, Antraceno (0,000016 – 0,060) mg/l Benzo (a)antraceno (0,000016 – 0,064) mg/l Benzo (a) pireno (0,000016 – 0,057) mg/l Benzo (b) fluoranteno (0,000016 – 0,038) mg/l Benzo (g,h,i) pireleno (0,000016 – 0,072) mg/l Benzo (k) fluoranteno (0,000016 – 0,059)mg/l Dibenzo (a,h) antraceno (0,000016 – 0,087) mg/l Criseno (0,000016 – 0,086) mg/l Fenantreno (0,000016 – 0,033) mg/l Fluoreno (0,000016 – 0,021) mg/l Fluoranteno (0,000016 – 0,160) mg/l Indeno (1,2,3-cd) pireno (0,000016 – 0,109) mg/l Naftaleno (0,000016 – 0,120) mg/l Pireno (0,000016 – 0,023) mg/l Acenafteno (0,000016 – 0,023) mg/l HAPs Totales (cálculo)	PEE/CESTTA/08 Método de referencia: Standard Methods Ed21, 2005 6440B

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	0,00024 – 1,108 mg/l	

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Fluoruros, Espectrofotometría UV-Vis, (0,30 a 1,8) mg/l	PEE/CESTTA/73 Método de referencia Standard Methods Ed.21, 2005, 4500-FD.
	Aceites y Grasas, Gravimetría, (2,0 a 100,0) mg/l	PEE/CESTTA/42 Método de referencia: Standard Methods, Ed 22. 2012,
	(2,0 a 100,0) mg/1	5520 B
	Fósforo Total, expresado como (P-PO ₄)o (PO ₄), Espectrofotometría UV-VIS,	PEE/CESTTA/21 Método de referencia: Standard Methods, Ed 22. 2012 4500-P B5 y 4500-P C
	(1,70 a 33,00) mg/l	PEE/CESTTA/16
	Nitratos, expresado como (N-NO ₃)o (NO ₃), Espectrofotometría UV-VIS, (2,30 a 37,30) mg/L	Método de referencia: HACH 3089 Standard Methods, Ed 22. 2012, 4500 NO ₃ -
PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Color, Espectrofotometría UV- Vis,	PEE/CESTTA/61 Método de referencia: Standard Methods, Ed. 22. 2012,
Aguas de consumo	(8 a 500) unidades Pt Co Cromo hexavalente (Cr 6+), Espectrofotometría UV-Vis, (0,02 a 2,00) mg/l	2120 C PEE/CESTTA/32 Método de referencia: Standard Methods, Ed. 22. 2012 3500-Cr B
Aguas naturales Aguas residuales	Nitritos (N-NO ₂ -), Espectrofotometría UV-Vis, (0,03 a 2,44) mg/l	PEE/CESTTA/17 Método de referencia: Standard Methods, Ed. 22. 2012 4500-NO ₂ -B
	Nitrógeno total Kjeldakl, Volumetría, (4,0 a 400) mg/l	PEE/CESTTA/210 Método de referencia: Standard Methods,Ed.22.2012 4500- N _{org} C
Aguas de consumo Aguas naturales	Sulfuros (S ₂ -), Espectrofotometría UV-Vis, (0,02 a 9,90) mg/l	PEE/CESTTA/19 Método de referencia: Standard Methods, Ed. 22. 2012 4500-S ²⁻ C y D
Aguas residuales Lixiviados	Cianuro total (CN ⁻), Espectrofotometría UV-Vis, (0,017 a 12,00) mg/l	PEE/CESTTA/22 Método de referencia: Standard Methods, Ed. 22. 2012 4500-CN-C y E (Modificado)

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Metales, Espectrofotometría de Absorción Atómica –Llama, Aire- Acetileno Cromo(Cr), (0,3 a 4,0) mg/l Plomo(Pb), (0,3 a 8,0) mg/l Zinc(Zn), (0,2 a 7,8) mg/l	PEE/CESTTA/28 Método de referencia: Standard Methods Ed21,2005 3030B, 3111B. PEE/CESTTA/29 Método de referencia: Standard Methods Ed21,2005 3030B, 3111B. PEE/CESTTA/68 Método de referencia: Standard Methods Ed21,2005 3500-ZnB/3030-E3111-B
Aguas naturales Aguas residuales	Hierro(Fe), (0,2 a 26) mg/l	PEE/CESTTA/35 Método de referencia: Standard Methods Ed21, 2005 3500-FeB/3030-E3111-B
	Cobre(Cu), (0,02 a 23) mg/l	PEE/CESTTA/57 Método de referencia: Standard Methods Ed21,2005 3500-CuB/3030-E3111-B
	Cadmio(Cd), (0,04 a 4,00) mg/l	PEE/CESTTA/33 Método de referencia: Standard Methods Ed21,2005 3500-CdB/3030-E3111-B
	Níquel(Ni), (0,2 a 14) mg/l	PEE/CESTTA/31 Método de referencia: Standard Methods Ed21,2005 3500-NiB/3030-E3111-B
Aguas residuales Aguas naturales	Fenoles, Espectrofotometría UV- Vis, (0,02 a 0,2)mg/l	PEE/CESTTA/14 Método de referencia Standard Methods Ed.21,2005 5530C
Aguas de consumo. Aguas naturales	Metales, Plasma de Acoplamiento Inductivo (ICP- AES), Plata, (0,005 a 10) mg/l Aluminio (0,05 a 20) mg/l Arsénico (0,01 a10) mg/l Boro (0,05 a 20) mg/l Bario (0,07 a 30)mg/l Berilo (0,006 a 10) mg/l Cadmio (0,0008 a 10)mg/l Cromo (0,01 a 10) mg/l Cobre (0,006 a 10) mg/l Hierro (0,07 a 30) mg/l Manganeso (0,006 a 10) mg/l Molibdeno (0,003 a10) mg/l	PEE/CESTTA/174 Método de referencia: EPA 200.7 ICP – AES Rev. 4.4 1994

PRODUCTO O	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
MATERIAL A ENSAYAR		ME1000 DE ENOATO
	Níquel (0,01 a 10) mg/l Plomo (0,005 a 10) mg/l Antimonio (0,006 a 10) mg/l Selenio (0,01 a 10) mg/l Talio (0,01 a 10) mg/l Vanadio (0,006 a 10) mg/l Zinc (0,05 a 20) mg/l	
Aguas residuales	Metales, Plasma de Acoplamiento Inductivo (ICP- AES), Plata, (0,01 a 10) mg/l Aluminio (0,5 a 20) mg/l Arsénico (0,01 a 10) mg/l Boro (0,25 a 20) mg/l Bario (0,5 a 30) mg/l Berilo (0,05 a 10) mg/l Cadmio (0,004 a 10) mg/l Cromo (0,01 a 10) mg/l Cobre (0,05 a 10) mg/l Hierro (0,5 a 30) mg/l Manganeso (0,05 a 10) mg/l Molibdeno (0,01 a 10) mg/l Níquel (0,05 a 10) mg/l Plomo (0,01 a 10) mg/l Antimonio (0,02 a 10) mg/l Selenio (0,05 a 10) mg/l Talio (0,01 a 10) mg/l Vanadio (0,05 a 20) mg/l Zinc (0,25 a 20) mg/l	PEE/CESTTA/174 Método de referencia: EPA 200.7 ICP – AES Rev. 4.4 1994
Aguas naturales Aguas residuales Aguas de consumo	Turbidez, Nefelometría, (0,64 a 200) NTU	PEE/CESTTA/42 Método de referencia. EPA 180.1. 2003
Lixiviados	Metales, Espectrofotometría de Absorción Atómica –Llama, Aire-Acetileno Cromo(Cr), (0,3 a 4) mg/l Cadmio(Cd), (0,02 a 0,40) mg/l Vanadio(V), (0,50 a 8,0) mg/l Bario(Ba), (1,0 a 8,0) mg/l	PEE/CESTTA/94 Método de referencia EPA Method 1311 Ed1,1992 Standard Methods Ed.21, 20053030E y 3111B. PEE/CESTTA/96 Método de referencia EPA Method 1311 Ed1,1992 Standard Methods, Ed.21, 2005 3030E y 3111B. PEE/CESTTA/95 Método de referencia EPA Method 1311 Ed1,1992 Standard Methods Ed.21, 20053030 E y 3111D. PEE/CESTTA/93 Método de referencia EPA Method 1311 Ed1,1992 Standard Methods Ed.21, 20153030 E y 3111D. PEE/CESTTA/93 Método de referencia EPA Method 1311 Ed1,1992 Standard Methods Ed.21,

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
		20053030Ey3111D.
Aguas de consumo Aguas naturales Aguas residuales	Mercurio, Espectroscopia de Absorción Atómica de Vapor Frio CVAA (0,001 a 0,1) mg/L	PEE/CESTTA/34 EPA 3015 A, Rev. 1, 2007. EPA 245.1, Rev. 3, 1994 EPA 7470A, Rev. 1, 1994
Lixiviados	Hidrocarburos totales de petróleo (TPHs), Cromatografía de gases, (0,2 a 500) mg/L	PEE/CESTTA/07 Método de referencia TNRCC -1005,Revisión 03, 2001

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Aguas de consumo	Aceites y grasas, Gravimetría,	
Aguas de consumo Aguas naturales Aguas residuales	(0,3 a 250) mg/l	PEE/CESTTA/233 Método de referencia: EPA 1664 Revisión A, 1999

CAMPO DE ENSAYO: Análisis Físico – Químico en Suelos y sedimentos

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Metales, Espectrofotometría de Absorción Atómica –Llama, Aire- Acetileno,	PEE/CESTTA/76 Método de referencia EPA SW-846 Nº 3050B, 3051A, 7000B, 7130.
	Cadmio(Cd), (0,8 a 182) mg/kg	
	Níquel(Ni),	PEE/CESTTA/77 Método de referencia EPASW-
	(30 a 400) mg/kg	846N3050B,7520.Ed.3,1986
Suelos Sedimentos	Plomo (Pb), (20 a 800) mg/kg	PEE/CESTTA/78 Método de referencia EPASW- 846N3050B,7420.Ed.3,1986
SSGTSTREE	Hidrocarburos totales de petróleo (TPH),Cromatografía de gases,	PEE/CESTTA/26 Método de referencia TNRCC -1005,Revisión 03,
	(71 a 120 000) mg/kg	2001
	Hidrocarburos aromáticos policíclicos (HAPs), Cromatografía líquida de alta eficiencia HPLC,	PEE/CESTTA/23 Método de referencia EPASW-846N8310.Ed.3,1986 EPASW-846N3540,1992
	(0,30 a 4,5) mg/kg	
	Materia orgánica, Gravimetría,	PEE/CESTTA/195 Método de referencia:
	(1,70 a 30,00) % pH, Electrometría,	NEN 5754. 2005 PEE/CESTTA/24
Suelos	рн, Electrometria, (4,0 a 10,0) unidades de pH	Método de referencia: EPA9045D.2004
Lodos	Conductividad eléctrica, Electrometría,	PEE/CESTTA/85 Método de referencia: EPA9045D.2004
	(10 a 10 000) uS/cm	EFA9043D.2004

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Suelos y Sedimentos	Hidrocarburos Aromáticos Policíclicos (HAPs), Cromatografía Líquida de Alta Eficacia HPLC	PEE/CESTTA/23 EPA 8310. Rev. 0, 1986. EPA 3550C, Rev. 3, 2007.
	Naftaleno (0,015 a 27) mg/kg	

Fluoreno
(0,015 a 1,2) mg/kg
(5,515 & 1,2/1119/119
Fenantreno
(0,015 a 31) mg/kg
Antraceno
(0,015 a 25) mg/kg
Fluoranteno
(0,015 a 23) mg/kg
Pireno
(0,015 a 21) mg/kg
Benzo(a)Antraceno
(0,015 a 21) mg/kg
Criseno
(0,015 a 20) mg/kg
Benzo(b)Fluoranteno
(0,015 a 20) mg/kg
Benzo(k)Fluoranteno (0,015 a 20) mg/kg
Benzo(a)Pireno
(0,015 a 21) mg/kg
Dibenzo(a,h)Antraceno
(0,015 a16) mg/kg
Benzo(g,h,i)Perileno
(0,015 a 4,2) mg/kg
Indeno(1,2,3-cd)Pireno
(0,015 a 21) mg/kg

CAMPO DE ENSAYO: Ensayos Físico – químicos en muestras de aire atrapadas

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Muestra de aire atrapada en Bolsa de Muestreo de Gases Tedlar	Compuestos orgánicos volátiles (COVs), Cromatografía de gases, (10 a 100) mg/l	PEE/CESTTA/51 Método de referencia: EPAMétodo18:1986
Muestra de aire atrapada en resina XAD-2	Hidrocarburos aromáticos policíclicos (HAPs), Cromatografía líquida de alta eficiencia HPLC, (0,3 a 180) mg/l	PEE/CESTTA/50 Método de referencia: EPASW-846Nº8310,1986 EPASW-846Nº3540,1992

CAMPO DE ENSAYO: Análisis Físico – Químicos en aceites dieléctricos

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Aceites Aislantes Eléctricos	PCBs, Cromatografía de Gases	
	ECD,	
	Aroclor 1242	
	(10,0 a 750,0) mg/kg	PEE/CESTTA/232
	Aroclor 1254	Método de referencia: ASTM D4059-00-2010
	(10,0 a 750,0) mg/kg	7.61 2 1000 00 2010
	Aroclor 1260	
	(10,0 a 750,0) mg/kg	

CAMPO DE ENSAYO: Ensayos Físico – químicos en bebidas alcohólicas

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Bebidas alcohólicas	Metanol, Cromatografía de gases, (2,0 a 100) mg/100 ml (Alcohol absoluto)	PEE/CESTTA/142 Método de referencia NTE INEN2014/1994-10
	n-Propanol, Cromatografía de gases, (2,0 a 100) mg/100 ml (Alcohol absoluto)	
	2-Metilpropanol,Cromatografía de gases, (2,0 a 100) mg/100 ml (Alcohol absoluto)	
	2+3-Metilbutanol, Cromatografía de gases, (2,0 a 100) mg/100 ml (Alcohol absoluto)	

CAMPO DE ENSAYO: Ensayos Físico – químicos en alimentos

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Carnes y productos cárnicos	Humedad, Gravimetría, (26,70 a 76,32) %	PEE / CESTTA /119 Método de referencia: AOAC, Ed. 19. 2012 950.46B.
	Grasa, Gravimetría, (1,6 a 55) %	PEE/CESTTA/102 Método de referencia: AOAC, Ed. 19. 2012 960.39B
	Proteína, Kjeldahl, (5,14 a 46,57) %	PEE / CESTTA /104 Método de referencia: AOAC, ed. 19. 2012 928.08
	Ceniza, Gravimetría,	PEE / CESTTA /101

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	(0,96 a 30,61) %	Método de referencia: AOAC, Ed. 19. 2012 920.153
	Proteína, Kjeldahl (6,60 a 49,30) %	PEE/CESTTA/191 Método de Referencia: AOAC, Ed. 19. 2012 984.13ª
Harinas de origen vegetal	Ceniza, Gravimetría, (0,80 a 5,00) %	PEE/CESTTA/193 Método de Referencia: AOAC, Ed. 19. 2012 923.03
Harinas de origen animal	Proteína, Kjeldahl, (1,10 a 84,12) %	PEE/CESTTA/202 Método de Referencia: AOAC, Ed. 19. 2012 984.13A
	Ceniza, Gravimetría, (3,30 a 97,60) %	PEE/CESTTA/204 Método de Referencia: AOAC, Ed. 19. 2012 923.03

CAMPO DE ENSAYO: Análisis Microbiológicos en aguas

er inn e z = = i er i er r indinere inneresionegrees en aguas		
PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Aguas naturales Aguas residuales	Coliformes fecales, Filtración por membrana, >1UFC/100 ml	PEE/CESTTA/48 Método de referencia: Standard Methods Ed.22,201220059222Dy92221 Coliformes fecales
Aguas naturales Aguas residuales Aguas de consumo	Coliformes totales, Filtración por membrana, >1 UFC/100 ml	PEE / CESTTA /047 Método de referencia: Standard Methods, Ed 22. 2012 9222 B

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Aguas de consumo Aguas naturales Aguas residuales	Coliformes totales, Fermentación en tubos múltiples (NMP), > 1,1 NMP/100 ml	PEE/CESTTA/229 Método de referencia: Standard Methods, Ed. 22. 2012 9221 B/ 9221 C
Aguas de consumo Aguas naturales Aguas residuales	Coliformes fecales, Fermentación en tubos múltiples (NMP), > 1,1 NMP/100 ml	PEE/CESTTA/230 Método de referencia: Standard Methods, Ed. 22. 2012 9221 E/ 9221 C

CATEGORÍA 1: Ensayos in-situ

CAMPO DE ENSAYO: Ensayos Físico – químicos en aguas

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Aguas naturales Aguas residuales Aguas de consumo	pH , Electrometría, (4 a 10) unidades de pH	PEE / CESTTA /164 Método de referencia: Standard Methods, Ed 22. 2012 4500- H+ B
	Temperatura, Termometría, (5 a 70) °C.	PEE / CESTTA /004 Método de referencia: Standard Methods, Ed 22. 2012 2550 B
	Oxígeno disuelto, Electrometría, (1,82 a 9) mg/l	PEE/CESTTA/206 Método de referencia: Standard Methods, Ed. 22. 2012 4500-O G EPA 360.1, 1971
	Conductividad, Electrometría, (9,0 a 10 000) µS/cm	PEE/CESTTA/199 Método de referencia: Standard Methods, Ed. 22. 2012 2510 B
	Cloro libre, Espectrofotometría UV-Vis, (0,2 a 4)mg/l	PEE/CESTTA/198 Métodos de referencia: Standard Methods, Ed. 21. 2005 4500- CI G

CAMPO DE ENSAYO: Análisis Físico-químicos de emisiones gaseosas de fuentes fijas de combustión

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Material particulado, (5 a170) mg/m³	PEE/CESTTA/59 Método de referencia: EPA-CFR40PT60 ApéndiceA.Método5.2003
Emisiones de fuentes fijas de combustión	Concentración de Gases Contaminantes, Celdas electroquímicas Monóxido de Carbono(CO), (10 a 1000)ppm Compuestos de nitrógeno (NOx),suma de NO y NO ₂ , (19 a 1000)ppm Dióxido de Azufre(SO ₂), (20 a 1000)ppm	PEE/CESTTA/03 Método de referencia: EPA – CTM-30.1997

CAMPO DE ENSAYO: Ensayos físico químicos en el aire ambiente

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Material particulado, PM10, Gravimetría,	PEE/CESTTA/112 Método de referencia U.S.EPA, Appendixjtopart50
Aire ambiente	(5 a 300) ug/m³	
	Material particulado, PM2.5, Gravimetría, (5 a 150) ug/m³	PEE/CESTTA/113 Método de referencia U.S.EPA, Appendixjtopart50

CAMPO DE ENSAYO: Acústica Ambiental

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
Ruido ambiental	Ruido, Nivel de presión sonora, (40 a 120) dB	PEE/CESTTA/52 Método de referencia Norma ISO1996-2-2007

CAMPO DE ENSAYO: Ensayos Físicos en ambiente laboral

OAM O DE ENGATO. Ensayos i isloos en ambiente laboral		
PRODUCTO O MATERIAL A ENSAYAR	ENSAYO,TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Estrés térmico , Termometría, (20 a 35) °C	PEE / CESTTA /162 Método de referencia: ISO-7243;1989
Ambiente laboral	Luminosidad, Celda fotolumínica, (62 a 2 000) lx	PEE / CESTTA /161 Método de referencia. I.E.S. Lighting Handbook, Ed. 10, 2011
Acústica laboral	Ruido, Nivel de presión sonora, (40 a 120) dB	PEE / CESTTA /163 Método de referencia: ISO 9612.2009

CAMPO DE ENSAYO: Análisis Físico químicos de emisiones gaseosas de fuentes fijas de combustión

PRODUCTO O MATERIAL A ENSAYAR	ENSAYO, TÉCNICA Y RANGOS	MÉTODO DE ENSAYO
	Gases Contaminantes,	PEE/CESTTA/217
Emisiones de fuentes fijas de combustión	Monóxido de nitrógeno (NO), Quimioluminiscencia, (20 a 1000) ppm Óxido de nitrógeno (NOx), Quimioluminiscencia, (20 a 1000) ppm Monóxido de carbono (CO), NDIR (Infrarrojo no dispersivo) (20 a 1000) ppm Dióxido de azufre(SO ₂), (20 a 1000) ppm	Método de referencia: EPA CFR 40 PT 60 Apéndice A EPA Método 7 E EPA Método 10 EPA Método 6 C

Control de Cambios en Alcance

Fecha	Modificaciones
2015-12-01	Vigilancia 1, Mantener la Acreditación Ampliación de Alcance, Otorgar la Acreditación.
2016-06-10	Cambio de Razón social, Aceptar el cambio
2017-02-02	Vigilancia 2, Mantener la Acreditación Ampliación de Alcance, Ampliar la Acreditación.
2017-12-21	Vigilancia 3, Mantener la Acreditación Retiro voluntario Coliformes Totales

CENTRO DE SERVICIOS TÉCNICOS Y TRANSFERENCIA TECNOLÓGICA AMBIENTAL CESTTA

ANEXO 5. ACTAS DE INYECCIÓN / REPORTE ACUMULADO DE INYECCIÓN

REGISTRO DE REINYECCIÓN DE AGUAS GRISES Y NEGRAS PREVIAMENTE TRATADAS

Locación	Tipo Fluido	Lugar de disposición	Periodo de Reinyección	Volumer (BBL)	
APAIKA PRODUCCIÓN	Aguas grises y negras tratadas biológicamente	Disposal Well del Pozo Inyector Apaika 001x	Abril 2018	462	
Volumen mensual evacuado (BBL)				462	

Consideraciones:

- 1. No utilizar el mismo registro si el campamento cambia de locación
- 2. Registrar el volumen total (bbl), cuando el campamento cambie de locación.

Nombre:

Nombre: Maguel Jaean

Especialista SSA- Bloque 31

Superintendente de Operaciones Bloque 31

REGISTRO DE REINYECCIÓN DE AGUAS GRISES Y NEGRAS PREVIAMENTE TRATADAS

Locación	Tipo Fluido	Lugar de disposición	Periodo de Reinyección	Volumen (BBL)
APAIKA PRODUCCIÓN	Aguas grises y negras tratadas biológicamente	Disposal Well del Pozo Inyector Apaika 001x	Mayo 2018	626
Volumen mensual evacuado (BBL)			1	626

Consideraciones:

- 1. No utilizar el mismo registro si el campamento cambia de locación
- 2. Registrar el volumen total (bbl), cuando el campamento cambie de locación.

Nombre: MAEJUR JOESHINO

Especialista SSA- Bloque 31

Nombre:

Superintendente de Operaciones Bloque 31

R. MARINT

REGISTRO DE REINYECCIÓN DE AGUAS GRISES Y NEGRAS PREVIAMENTE TRATADAS

Locación	Tipo Fluido	Lugar de disposición	Periodo de Reinyección	Volumer (BBL)	
APAIKA PRODUCCIÓN	Aguas grises y negras tratadas biológicamente	Disposal Well del Pozo Inyector Apaika 001x	Junio 2018	528	
Volumen mensual evacuado (BBL)				528	

Consideraciones:

- 1. No utilizar el mismo registro si el campamento cambia de locación
- 2. Registrar el volumen total (bbl), cuando el campamento cambie de locación.

Nombre: Harve

Especialista SSA- Bloque 31

Nombre: _

Superintendente de Operaciones Bloque 31

R. PARINO

REPORTE POZO INYECTOR APAIKA 001							
FECHA	ACUMUL. ANTERIOR	ACUMUL. ACTUAL	BBLS. INYECTADOS	Pcabeza (PSI)	T (horas)	Salinidad	Observaciones
1 de abril de 2018	777207	777207	0	0	0	0	
2 de abril de 2018	777207	777207	0	0	0	0	
3 de abril de 2018	777207	777207	0	0	0	0	
4 de abril de 2018	777207	777207	0	0	0	0	
5 de abril de 2018	777207	777207	0	0	0	0	
6 de abril de 2018	777207	777207	0	0	0	0	
7 de abril de 2018	777207	777207	0	0	0	0	
8 de abril de 2018	777207	777207	0	0	0	0	
9 de abril de 2018	777207 777207	777207 777207	0	0	0	0	
10 de abril de 2018 11 de abril de 2018	777207	777207	0	0	0	0	
12 de abril de 2018	777207	777207	0	0	0	0	
13 de abril de 2018	777207	777207	0	0	0	0	
14 de abril de 2018	777207	777774	567	1920	2	1100	
15 de abril de 2018	777774	777774	0	0	0	0	
16 de abril de 2018	777774	777774	0	0	0	0	
17 de abril de 2018	777774	777774	0	0	0	0	
18 de abril de 2018	777774	777774	0	0	0	0	
19 de abril de 2018	777774	778321	547	1980	2	1100	
20 de abril de 2018	778321	778321	0	0	0	0	
21 de abril de 2018	778321	778321	0	0	0	0	
22 de abril de 2018	778321	778321	0	0	0	0	
23 de abril de 2018	778321	778321	0	0	0	0	
24 de abril de 2018	778321	778321	0	0	0	0	
25 de abril de 2018	778321	778321	0	0	0	0	
26 de abril de 2018 27 de abril de 2018	778321 778321	778321 778321	0	0	0	0	
28 de abril de 2018	778321	778321	0	0	0	0	
29 de abril de 2018	778321	778321	0	0	0	0	
30 de abril de 2018	778321	778890	569	1970	3	1100	
	L BBLS INYECT		669954	TOTAL HORAS	4215		
1 de mayo de 2018	778890	778890	0	0	0	0	
2 de mayo de 2018	778890	778890	0	0	0	0	
3 de mayo de 2018	778890	778890	0	0	0	0	
4 de mayo de 2018	778890	779560	670	1925	3	1100	
5 de mayo de 2018	779560	779560	0	0	0	0	
6 de mayo de 2018	779560	779560	0	0	0	0	
7 de mayo de 2018 8 de mayo de 2018	779560 779560	779560 779560	0	0	0	0	
9 de mayo de 2018	779560	780360	800	1975	3	1100	
10 de mayo de 2018	780360	780360	0	0	0	0	
11 de mayo de 2018	780360	780920	560	1970	3	1100	
12 de mayo de 2018	780920	780920	0	0	0	0	
13 de mayo de 2018	780920	780920	0	0	0	0	
14 de mayo de 2018	780920	780920	0	0	0	0	
15 de mayo de 2018	780920	780920	0	0	0	0	
16 de mayo de 2018	780920	780920	0	0	0	0	
17 de mayo de 2018	780920	780920	0	0	0	0	
18 de mayo de 2018	780920	780920	0	0	0	0	
19 de mayo de 2018	780920	780920	0	0	0	0	
	780920	780920	0	0	0	0	
20 de mayo de 2018	780920	780920	0	0	0	0	
21 de mayo de 2018			560	1965 1970	3	1100	
21 de mayo de 2018 22 de mayo de 2018	780920	781480	040	11/11	0	0	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018	780920 781480	782090	610		0	^	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018	780920 781480 782090	782090 782090	0	0	0	1100	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018	780920 781480 782090 782090	782090 782090 782842	0 752	0 1985	3	1100	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018 26 de mayo de 2018	780920 781480 782090 782090 782842	782090 782090 782842 782842	0 752 0	0 1985 0	3 0	1100 0	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018 26 de mayo de 2018 27 de mayo de 2018	780920 781480 782090 782090 782842 782842	782090 782090 782842 782842 783332	0 752 0 490	0 1985 0 1986	3 0 3	1100 0 1100	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018 26 de mayo de 2018 27 de mayo de 2018 28 de mayo de 2018	780920 781480 782090 782090 782842 782842 783332	782090 782090 782842 782842	0 752 0	0 1985 0	3 0	1100 0	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018 26 de mayo de 2018 27 de mayo de 2018	780920 781480 782090 782090 782842 782842	782090 782090 782842 782842 783332 783332	0 752 0 490	0 1985 0 1986	3 0 3 0	1100 0 1100 0	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018 26 de mayo de 2018 27 de mayo de 2018 28 de mayo de 2018 29 de mayo de 2018 30 de mayo de 2018	780920 781480 782090 782090 782842 782842 783332 783332	782090 782090 782842 782842 783332 783332 783332	0 752 0 490 0	0 1985 0 1986 0	3 0 3 0	1100 0 1100 0	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018 26 de mayo de 2018 27 de mayo de 2018 28 de mayo de 2018 29 de mayo de 2018 30 de mayo de 2018 31 de mayo de 2018	780920 781480 782090 782090 782842 782842 783332 783332 783332	782090 782090 782842 782842 783332 783332 783332 783796 784274	0 752 0 490 0 0 464	0 1985 0 1986 0 0 0 1993	3 0 3 0 0 4	1100 0 1100 0 0 1100	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018 26 de mayo de 2018 27 de mayo de 2018 28 de mayo de 2018 29 de mayo de 2018 30 de mayo de 2018 31 de mayo de 2018	780920 781480 782090 782090 782842 782842 783332 783332 783332 783796	782090 782090 782842 782842 783332 783332 783332 783796 784274	0 752 0 490 0 0 0 464 478	0 1985 0 1986 0 0 0 1993 1990	3 0 3 0 0 4 3	1100 0 1100 0 0 1100	
21 de mayo de 2018 22 de mayo de 2018 23 de mayo de 2018 24 de mayo de 2018 25 de mayo de 2018 26 de mayo de 2018 27 de mayo de 2018 28 de mayo de 2018 29 de mayo de 2018 30 de mayo de 2018 31 de mayo de 2018 TOTAL B	780920 781480 782090 782090 782842 782842 783332 783332 783332 783796 BLS INYECTADO	782090 782090 782842 782842 783332 783332 783332 783796 784274 S	0 752 0 490 0 0 464 478 675338	0 1985 0 1986 0 0 1993 1990 TOTAL HORAS	3 0 3 0 0 4 3 4240	1100 0 1100 0 0 1100 1100	

4 de junio de 2018	784832	785474	642	1988	3	1100	
5 de junio de 2018	785474	786196	722	1995	3	1100	
6 de junio de 2018	786196	786196	0				
7 de junio de 2018	786196	786992	796	1985	3	1100	
8 de junio de 2018	786992	786992	0	0	0	0	
9 de junio de 2018	786992	786992	0	0	0	0	
10 de junio de 2018	786992	786992	0	0	0	0	
11 de junio de 2018	786992	786992	0	0	0	0	
12 de junio de 2018	786992	786992	0	0	0	0	
13 de junio de 2018	786992	786992	0	0	0	0	
14 de junio de 2018	786992	786992	0	0	0	0	
15 de junio de 2018	786992	786992	0	0	0	0	
16 de junio de 2018	786992	786992	0	0	0	0	
17 de junio de 2018	786992	786992	0	0	0	0	
18 de junio de 2018	786992	786992	0	0	0	0	
19 de junio de 2018	786992	786992	0	0	0	0	
20 de junio de 2018	786992	786992	0	0	0	0	
21 de junio de 2018	786992	786992	0	0	0	0	
22 de junio de 2018	786992	786992	0	0	0	0	
23 de junio de 2018	786992	786992	0	0	0	0	
24 de junio de 2018	786992	786992	0	0	0	0	
25 de junio de 2018	786992	786992	0	0	0	0	
26 de junio de 2018	786992	786992	0	0	0	0	
27 de junio de 2018	786992	786992	0	0	0	0	
28 de junio de 2018	786992	786992	0	0	0	0	
29 de junio de 2018	786992	787454	462	1978	3	1100	
30 de junio de 2018	787454	788011	557	1950	4	1100	
TOTAL BE	TOTAL BBLS INYECTADOS		679075	TOTAL HORAS	4259		